Suppr超能文献

CONIPHER:一个具有纠错功能的可扩展的系统发育重建计算框架。

CONIPHER: a computational framework for scalable phylogenetic reconstruction with error correction.

机构信息

Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK.

Cancer Evolution and Genome Instability Laboratory, The Francis Crick Institute, London, UK.

出版信息

Nat Protoc. 2024 Jan;19(1):159-183. doi: 10.1038/s41596-023-00913-9. Epub 2023 Nov 28.

Abstract

Intratumor heterogeneity provides the fuel for the evolution and selection of subclonal tumor cell populations. However, accurate inference of tumor subclonal architecture and reconstruction of tumor evolutionary histories from bulk DNA sequencing data remains challenging. Frequently, sequencing and alignment artifacts are not fully filtered out from cancer somatic mutations, and errors in the identification of copy number alterations or complex evolutionary events (e.g., mutation losses) affect the estimated cellular prevalence of mutations. Together, such errors propagate into the analysis of mutation clustering and phylogenetic reconstruction. In this Protocol, we present a new computational framework, CONIPHER (COrrecting Noise In PHylogenetic Evaluation and Reconstruction), that accurately infers subclonal structure and phylogenetic relationships from multisample tumor sequencing, accounting for both copy number alterations and mutation errors. CONIPHER has been used to reconstruct subclonal architecture and tumor phylogeny from multisample tumors with high-depth whole-exome sequencing from the TRACERx421 dataset, as well as matched primary-metastatic cases. CONIPHER outperforms similar methods on simulated datasets, and in particular scales to a large number of tumor samples and clones, while completing in under 1.5 h on average. CONIPHER enables automated phylogenetic analysis that can be effectively applied to large sequencing datasets generated with different technologies. CONIPHER can be run with a basic knowledge of bioinformatics and R and bash scripting languages.

摘要

肿瘤内异质性为亚克隆肿瘤细胞群体的进化和选择提供了动力。然而,从大量 DNA 测序数据中准确推断肿瘤亚克隆结构并重建肿瘤进化史仍然具有挑战性。通常,测序和比对伪影不能从癌症体细胞突变中完全过滤掉,并且在识别拷贝数改变或复杂进化事件(例如突变丢失)时的错误会影响突变的估计细胞流行率。这些错误共同影响了突变聚类和系统发育重建的分析。在本方案中,我们提出了一种新的计算框架 CONIPHER(用于在进化评估和重建中校正噪声),该框架可以在考虑拷贝数改变和突变错误的情况下,从多样本肿瘤测序中准确推断亚克隆结构和系统发育关系。CONIPHER 已用于从 TRACERx421 数据集的高深度全外显子组测序的多样本肿瘤中重建亚克隆结构和肿瘤系统发育,以及匹配的原发-转移病例。CONIPHER 在模拟数据集上的性能优于类似的方法,特别是在处理大量肿瘤样本和克隆时,平均在 1.5 小时内完成。CONIPHER 能够实现自动化的系统发育分析,可以有效地应用于不同技术生成的大型测序数据集。CONIPHER 可以在具备基本生物信息学和 R 以及 bash 脚本语言知识的情况下运行。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验