Suppr超能文献

贝叶斯无监督聚类可识别出具有临床相关性的骨肉瘤亚型。

Bayesian unsupervised clustering identifies clinically relevant osteosarcoma subtypes.

作者信息

Llaneza-Lago Sergio, Fraser William D, Green Darrell

机构信息

Biomedical Research Centre, Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich NR4 7TJ, United Kingdom.

Bioanalytical Facility, Norwich Medical School, University of East Anglia, Norwich Research Park, Norwich NR4 7UQ, United Kingdom.

出版信息

Brief Bioinform. 2024 Nov 22;26(1). doi: 10.1093/bib/bbae665.

Abstract

Identification of cancer subtypes is a critical step for developing precision medicine. Most cancer subtyping is based on the analysis of RNA sequencing (RNA-seq) data from patient cohorts using unsupervised machine learning methods such as hierarchical cluster analysis, but these computational approaches disregard the heterogeneous composition of individual cancer samples. Here, we used a more sophisticated unsupervised Bayesian model termed latent process decomposition (LPD), which handles individual cancer sample heterogeneity and deconvolutes the structure of transcriptome data to provide clinically relevant information. The work was performed on the pediatric tumor osteosarcoma, which is a prototypical model for a rare and heterogeneous cancer. The LPD model detected three osteosarcoma subtypes. The subtype with the poorest prognosis was validated using independent patient datasets. This new stratification framework will be important for more accurate diagnostic labeling, expediting precision medicine, and improving clinical trial success. Our results emphasize the importance of using more sophisticated machine learning approaches (and for teaching deep learning and artificial intelligence) for RNA-seq data analysis, which may assist drug targeting and clinical management.

摘要

识别癌症亚型是开发精准医学的关键步骤。大多数癌症亚型分类是基于使用无监督机器学习方法(如层次聚类分析)对患者队列的RNA测序(RNA-seq)数据进行分析,但这些计算方法忽略了单个癌症样本的异质性组成。在此,我们使用了一种更复杂的无监督贝叶斯模型,称为潜在过程分解(LPD),该模型可处理单个癌症样本的异质性,并对转录组数据结构进行反卷积以提供临床相关信息。这项工作是在小儿肿瘤骨肉瘤上进行的,骨肉瘤是一种罕见且异质性癌症的典型模型。LPD模型检测到三种骨肉瘤亚型。使用独立的患者数据集验证了预后最差的亚型。这个新的分层框架对于更准确的诊断标记、加速精准医学以及提高临床试验成功率将具有重要意义。我们的结果强调了使用更复杂的机器学习方法(以及用于深度学习和人工智能教学)进行RNA-seq数据分析的重要性,这可能有助于药物靶向和临床管理。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2eb3/11658815/0eb9061fa683/bbae665f1.jpg

相似文献

1
Bayesian unsupervised clustering identifies clinically relevant osteosarcoma subtypes.
Brief Bioinform. 2024 Nov 22;26(1). doi: 10.1093/bib/bbae665.
3
Cell Differentiation Trajectory-Associated Molecular Classification of Osteosarcoma.
Genes (Basel). 2021 Oct 23;12(11):1685. doi: 10.3390/genes12111685.
6
Machine learning survival prediction using tumor lipid metabolism genes for osteosarcoma.
Sci Rep. 2024 Jun 5;14(1):12934. doi: 10.1038/s41598-024-63736-y.
7
Exploring the heterogeneity of osteosarcoma cell characteristics and metabolic states and their association with clinical prognosis.
Front Immunol. 2024 Dec 6;15:1507476. doi: 10.3389/fimmu.2024.1507476. eCollection 2024.
8
A novel stratification framework for predicting outcome in patients with prostate cancer.
Br J Cancer. 2020 May;122(10):1467-1476. doi: 10.1038/s41416-020-0799-5. Epub 2020 Mar 20.
9
Gene Expression Classifier Reveals Prognostic Osteosarcoma Microenvironment Molecular Subtypes.
Front Immunol. 2021 Apr 20;12:623762. doi: 10.3389/fimmu.2021.623762. eCollection 2021.
10
Towards clinically more relevant dissection of patient heterogeneity via survival-based Bayesian clustering.
Bioinformatics. 2017 Nov 15;33(22):3558-3566. doi: 10.1093/bioinformatics/btx464.

引用本文的文献

1
Targeting metastasis in paediatric bone sarcomas.
Mol Cancer. 2025 May 29;24(1):153. doi: 10.1186/s12943-025-02365-z.
3
Post-treatment late and long-term effects in bone sarcoma: A scoping review.
J Bone Oncol. 2025 Mar 21;52:100671. doi: 10.1016/j.jbo.2025.100671. eCollection 2025 Jun.

本文引用的文献

1
The Variable Genomic Landscape During Osteosarcoma Progression: Insights From a Longitudinal WGS Analysis.
Genes Chromosomes Cancer. 2024 Jul;63(7):e23253. doi: 10.1002/gcc.23253.
3
Mapping the Single-Cell Differentiation Landscape of Osteosarcoma.
Clin Cancer Res. 2024 Aug 1;30(15):3259-3272. doi: 10.1158/1078-0432.CCR-24-0563.
6
Noncoding RNAs improve the predictive power of network medicine.
Proc Natl Acad Sci U S A. 2023 Nov 7;120(45):e2301342120. doi: 10.1073/pnas.2301342120. Epub 2023 Oct 31.
7
Subclonal Somatic Copy-Number Alterations Emerge and Dominate in Recurrent Osteosarcoma.
Cancer Res. 2023 Nov 15;83(22):3796-3812. doi: 10.1158/0008-5472.CAN-23-0385.
8
Myo-differentiation reporter screen reveals NF-Y as an activator of PAX3-FOXO1 in rhabdomyosarcoma.
Proc Natl Acad Sci U S A. 2023 Sep 5;120(36):e2303859120. doi: 10.1073/pnas.2303859120. Epub 2023 Aug 28.
9
Cancer-associated fibroblast infiltration in osteosarcoma: the discrepancy in subtypes pathways and immunosuppression.
Front Pharmacol. 2023 Jun 27;14:1136960. doi: 10.3389/fphar.2023.1136960. eCollection 2023.
10
Tumor collagens predict genetic features and patient outcomes.
NPJ Genom Med. 2023 Jul 6;8(1):15. doi: 10.1038/s41525-023-00358-9.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验