Suppr超能文献

基于Coati优化算法的可迁移深度学习有丝分裂细胞核分割与分类模型

Transferable deep learning with coati optimization algorithm based mitotic nuclei segmentation and classification model.

作者信息

Alshardan Amal, Ahmad Nazir, Miled Achraf Ben, Alshuhail Asma, Alzahrani Yazeed, Mahmud Ahmed

机构信息

Department of Information Systems, College of Computer and Information Sciences, Princess Nourah Bint Abdulrahman University, P.O. Box 84428, 11671, Riyadh, Saudi Arabia.

Department of Computer Science, Applied College at Mahayil, King Khalid University, Abha, Saudi Arabia.

出版信息

Sci Rep. 2024 Dec 19;14(1):30557. doi: 10.1038/s41598-024-80002-3.

Abstract

Image processing and pattern recognition methods have recently been extensively implemented in histopathological images (HIs). These computer-aided techniques are aimed at detecting the attentive biological markers for assisting the final cancer grading. Mitotic count (MC) is a significant cancer detection and grading parameter. Conventionally, a pathologist examines the biopsy image physically by employing higher-power microscopy. The MC cells have been marked physically at every analysis, and total MC must be utilized as a major aspect for the cancer ranking and considered as the initiative of cancers. Numerous pattern recognition algorithms for cell-sized objects in HIs depend upon segmentation to assess features. The correct description of the segmentation has been difficult, and feature outcomes can be highly complex to the segmentation. The MC cells are an essential element in many cancer grading methods. Extraction of the MC cell from the HI is a highly challenging assignment. This manuscript proposes the Coati Optimization Algorithm with Deep Learning-Driven Mitotic Nuclei Segmentation and Classification (COADL-MNSC) technique. The major aim of the COADL-MNSC technique is to utilize the DL model to segment and classify the mitotic nuclei (MN). In the preliminary stage, the COADL-MNSC approach implements median filtering (MF) for pre-processing. Besides, the COADL-MNSC approach utilizes the Hybrid Attention Fusion U-Net (HAU-UNet) model to segment the MN. Moreover, the capsule network (CapsNet) model is employed for the feature extraction method, and its hyperparameters are adjusted by utilizing the COA model. At last, the classification procedure is performed using the bidirectional long short-term memory (BiLSTM) model. Extensive simulations are performed under the MN image dataset to exhibit the excellent performance of the COADL-MNSC methodology. The experimental validation of the COADL-MNSC methodology portrayed a superior accuracy value of 98.89% over existing techniques under diverse measures.

摘要

图像处理和模式识别方法最近已在组织病理学图像(HI)中得到广泛应用。这些计算机辅助技术旨在检测相关生物标志物,以辅助最终的癌症分级。有丝分裂计数(MC)是一个重要的癌症检测和分级参数。传统上,病理学家通过使用高倍显微镜对活检图像进行人工检查。在每次分析中,有丝分裂细胞都需人工标记,总MC必须作为癌症分级的主要依据,并被视为癌症诊断的首要指标。许多针对HI中细胞大小物体的模式识别算法都依赖于分割来评估特征。分割的准确描述一直很困难,并且特征结果可能因分割而变得非常复杂。有丝分裂细胞是许多癌症分级方法中的关键要素。从HI中提取有丝分裂细胞是一项极具挑战性的任务。本文提出了一种基于深度学习驱动的有丝分裂细胞核分割与分类的浣熊优化算法(COADL-MNSC)技术。COADL-MNSC技术的主要目标是利用深度学习模型对有丝分裂细胞核(MN)进行分割和分类。在初始阶段,COADL-MNSC方法采用中值滤波(MF)进行预处理。此外,COADL-MNSC方法利用混合注意力融合U-Net(HAU-UNet)模型对MN进行分割。此外,采用胶囊网络(CapsNet)模型进行特征提取,并利用浣熊优化算法(COA)模型调整其超参数。最后,使用双向长短期记忆(BiLSTM)模型进行分类。在MN图像数据集上进行了大量模拟,以展示COADL-MNSC方法的优异性能。COADL-MNSC方法的实验验证表明,在各种度量标准下,其准确率高达98.89%,优于现有技术。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4de2/11659405/693fe4d058af/41598_2024_80002_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验