AlGhamdi Rayed, Asar Turky Omar, Assiri Fatmah Y, Mansouri Rasha A, Ragab Mahmoud
Information Technology Department, Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah 21589, Saudi Arabia.
Department of Biology, College of Science and Arts at Alkamil, University of Jeddah, Jeddah, Saudi Arabia.
Cancers (Basel). 2023 Jun 23;15(13):3300. doi: 10.3390/cancers15133300.
An early diagnosis of lung and colon cancer (LCC) is critical for improved patient outcomes and effective treatment. Histopathological image (HSI) analysis has emerged as a robust tool for cancer diagnosis. HSI analysis for a LCC diagnosis includes the analysis and examination of tissue samples attained from the LCC to recognize lesions or cancerous cells. It has a significant role in the staging and diagnosis of this tumor, which aids in the prognosis and treatment planning, but a manual analysis of the image is subject to human error and is also time-consuming. Therefore, a computer-aided approach is needed for the detection of LCC using HSI. Transfer learning (TL) leverages pretrained deep learning (DL) algorithms that have been trained on a larger dataset for extracting related features from the HIS, which are then used for training a classifier for a tumor diagnosis. This manuscript offers the design of the Al-Biruni Earth Radius Optimization with Transfer Learning-based Histopathological Image Analysis for Lung and Colon Cancer Detection (BERTL-HIALCCD) technique. The purpose of the study is to detect LCC effectually in histopathological images. To execute this, the BERTL-HIALCCD method follows the concepts of computer vision (CV) and transfer learning for accurate LCC detection. When using the BERTL-HIALCCD technique, an improved ShuffleNet model is applied for the feature extraction process, and its hyperparameters are chosen by the BER system. For the effectual recognition of LCC, a deep convolutional recurrent neural network (DCRNN) model is applied. Finally, the coati optimization algorithm (COA) is exploited for the parameter choice of the DCRNN approach. For examining the efficacy of the BERTL-HIALCCD technique, a comprehensive group of experiments was conducted on a large dataset of histopathological images. The experimental outcomes demonstrate that the combination of AER and COA algorithms attain an improved performance in cancer detection over the compared models.
肺癌和结肠癌(LCC)的早期诊断对于改善患者预后和有效治疗至关重要。组织病理学图像(HSI)分析已成为癌症诊断的有力工具。用于LCC诊断的HSI分析包括对从LCC获取的组织样本进行分析和检查,以识别病变或癌细胞。它在该肿瘤的分期和诊断中具有重要作用,有助于预后和治疗规划,但图像的人工分析容易出现人为误差且耗时。因此,需要一种计算机辅助方法来使用HSI检测LCC。迁移学习(TL)利用在更大数据集上训练的预训练深度学习(DL)算法,从HIS中提取相关特征,然后将这些特征用于训练肿瘤诊断分类器。本文提出了基于迁移学习的组织病理学图像分析用于肺癌和结肠癌检测的阿尔 - 比鲁尼地球半径优化(BERTL - HIALCCD)技术的设计。该研究的目的是在组织病理学图像中有效地检测LCC。为了实现这一点,BERTL - HIALCCD方法遵循计算机视觉(CV)和迁移学习的概念来进行准确的LCC检测。使用BERTL - HIALCCD技术时,应用改进的ShuffleNet模型进行特征提取过程,其超参数由BER系统选择。为了有效识别LCC,应用深度卷积循环神经网络(DCRNN)模型。最后,利用浣熊优化算法(COA)进行DCRNN方法的参数选择。为了检验BERTL - HIALCCD技术的有效性,在一个大型组织病理学图像数据集上进行了一组全面的实验。实验结果表明,与比较模型相比,AER和COA算法的组合在癌症检测中取得了更好的性能。
Diagnostics (Basel). 2022-11-21
Biomimetics (Basel). 2023-6-26
Diagnostics (Basel). 2023-1-19
Front Med (Lausanne). 2022-11-8
Cancers (Basel). 2025-2-25
Diagnostics (Basel). 2023-4-29
Cancers (Basel). 2023-3-3
Healthcare (Basel). 2022-12-25
Med Biol Eng Comput. 2022-8
Diagnostics (Basel). 2021-8-16
Comput Biol Med. 2021-9