文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

基于迁移学习的组织病理学图像分析优化阿尔-比鲁尼地球半径用于肺癌和结肠癌检测

Al-Biruni Earth Radius Optimization with Transfer Learning Based Histopathological Image Analysis for Lung and Colon Cancer Detection.

作者信息

AlGhamdi Rayed, Asar Turky Omar, Assiri Fatmah Y, Mansouri Rasha A, Ragab Mahmoud

机构信息

Information Technology Department, Faculty of Computing and Information Technology, King Abdulaziz University, Jeddah 21589, Saudi Arabia.

Department of Biology, College of Science and Arts at Alkamil, University of Jeddah, Jeddah, Saudi Arabia.

出版信息

Cancers (Basel). 2023 Jun 23;15(13):3300. doi: 10.3390/cancers15133300.


DOI:10.3390/cancers15133300
PMID:37444410
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC10340056/
Abstract

An early diagnosis of lung and colon cancer (LCC) is critical for improved patient outcomes and effective treatment. Histopathological image (HSI) analysis has emerged as a robust tool for cancer diagnosis. HSI analysis for a LCC diagnosis includes the analysis and examination of tissue samples attained from the LCC to recognize lesions or cancerous cells. It has a significant role in the staging and diagnosis of this tumor, which aids in the prognosis and treatment planning, but a manual analysis of the image is subject to human error and is also time-consuming. Therefore, a computer-aided approach is needed for the detection of LCC using HSI. Transfer learning (TL) leverages pretrained deep learning (DL) algorithms that have been trained on a larger dataset for extracting related features from the HIS, which are then used for training a classifier for a tumor diagnosis. This manuscript offers the design of the Al-Biruni Earth Radius Optimization with Transfer Learning-based Histopathological Image Analysis for Lung and Colon Cancer Detection (BERTL-HIALCCD) technique. The purpose of the study is to detect LCC effectually in histopathological images. To execute this, the BERTL-HIALCCD method follows the concepts of computer vision (CV) and transfer learning for accurate LCC detection. When using the BERTL-HIALCCD technique, an improved ShuffleNet model is applied for the feature extraction process, and its hyperparameters are chosen by the BER system. For the effectual recognition of LCC, a deep convolutional recurrent neural network (DCRNN) model is applied. Finally, the coati optimization algorithm (COA) is exploited for the parameter choice of the DCRNN approach. For examining the efficacy of the BERTL-HIALCCD technique, a comprehensive group of experiments was conducted on a large dataset of histopathological images. The experimental outcomes demonstrate that the combination of AER and COA algorithms attain an improved performance in cancer detection over the compared models.

摘要

肺癌和结肠癌(LCC)的早期诊断对于改善患者预后和有效治疗至关重要。组织病理学图像(HSI)分析已成为癌症诊断的有力工具。用于LCC诊断的HSI分析包括对从LCC获取的组织样本进行分析和检查,以识别病变或癌细胞。它在该肿瘤的分期和诊断中具有重要作用,有助于预后和治疗规划,但图像的人工分析容易出现人为误差且耗时。因此,需要一种计算机辅助方法来使用HSI检测LCC。迁移学习(TL)利用在更大数据集上训练的预训练深度学习(DL)算法,从HIS中提取相关特征,然后将这些特征用于训练肿瘤诊断分类器。本文提出了基于迁移学习的组织病理学图像分析用于肺癌和结肠癌检测的阿尔 - 比鲁尼地球半径优化(BERTL - HIALCCD)技术的设计。该研究的目的是在组织病理学图像中有效地检测LCC。为了实现这一点,BERTL - HIALCCD方法遵循计算机视觉(CV)和迁移学习的概念来进行准确的LCC检测。使用BERTL - HIALCCD技术时,应用改进的ShuffleNet模型进行特征提取过程,其超参数由BER系统选择。为了有效识别LCC,应用深度卷积循环神经网络(DCRNN)模型。最后,利用浣熊优化算法(COA)进行DCRNN方法的参数选择。为了检验BERTL - HIALCCD技术的有效性,在一个大型组织病理学图像数据集上进行了一组全面的实验。实验结果表明,与比较模型相比,AER和COA算法的组合在癌症检测中取得了更好的性能。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e569/10340056/a47179dac7fc/cancers-15-03300-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e569/10340056/49f642ef7d1a/cancers-15-03300-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e569/10340056/eaccebcf8cf3/cancers-15-03300-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e569/10340056/d15af65b495e/cancers-15-03300-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e569/10340056/2bf57f674218/cancers-15-03300-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e569/10340056/86e82cb1c1c8/cancers-15-03300-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e569/10340056/fab141820000/cancers-15-03300-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e569/10340056/194f417886c9/cancers-15-03300-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e569/10340056/bf41e0a41d5c/cancers-15-03300-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e569/10340056/efd84c005422/cancers-15-03300-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e569/10340056/5db3bf515c30/cancers-15-03300-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e569/10340056/8f0515e19074/cancers-15-03300-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e569/10340056/a47179dac7fc/cancers-15-03300-g012.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e569/10340056/49f642ef7d1a/cancers-15-03300-g001.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e569/10340056/eaccebcf8cf3/cancers-15-03300-g002.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e569/10340056/d15af65b495e/cancers-15-03300-g003.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e569/10340056/2bf57f674218/cancers-15-03300-g004.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e569/10340056/86e82cb1c1c8/cancers-15-03300-g005.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e569/10340056/fab141820000/cancers-15-03300-g006.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e569/10340056/194f417886c9/cancers-15-03300-g007.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e569/10340056/bf41e0a41d5c/cancers-15-03300-g008.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e569/10340056/efd84c005422/cancers-15-03300-g009.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e569/10340056/5db3bf515c30/cancers-15-03300-g010.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e569/10340056/8f0515e19074/cancers-15-03300-g011.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/e569/10340056/a47179dac7fc/cancers-15-03300-g012.jpg

相似文献

[1]
Al-Biruni Earth Radius Optimization with Transfer Learning Based Histopathological Image Analysis for Lung and Colon Cancer Detection.

Cancers (Basel). 2023-6-23

[2]
An Al-Biruni Earth Radius Optimization-Based Deep Convolutional Neural Network for Classifying Monkeypox Disease.

Diagnostics (Basel). 2022-11-21

[3]
Exploiting histopathological imaging for early detection of lung and colon cancer via ensemble deep learning model.

Sci Rep. 2024-9-3

[4]
Classification of Breast Cancer Using Transfer Learning and Advanced Al-Biruni Earth Radius Optimization.

Biomimetics (Basel). 2023-6-26

[5]
Dung Beetle Optimization with Deep Feature Fusion Model for Lung Cancer Detection and Classification.

Cancers (Basel). 2023-8-5

[6]
Light-Dermo: A Lightweight Pretrained Convolution Neural Network for the Diagnosis of Multiclass Skin Lesions.

Diagnostics (Basel). 2023-1-19

[7]
Combining transfer learning with retinal lesion features for accurate detection of diabetic retinopathy.

Front Med (Lausanne). 2022-11-8

[8]
Ensemble of adapted convolutional neural networks (CNN) methods for classifying colon histopathological images.

PeerJ Comput Sci. 2022-7-5

[9]
Enhanced Pelican Optimization Algorithm with Deep Learning-Driven Mitotic Nuclei Classification on Breast Histopathology Images.

Biomimetics (Basel). 2023-11-10

[10]
A deep learning- and partial least square regression-based model observer for a low-contrast lesion detection task in CT.

Med Phys. 2019-4-1

引用本文的文献

[1]
Editorial for Special Issue "Image Analysis and Machine Learning in Cancers".

Cancers (Basel). 2025-2-25

[2]
Transferable deep learning with coati optimization algorithm based mitotic nuclei segmentation and classification model.

Sci Rep. 2024-12-19

[3]
Predictive analytics of complex healthcare systems using deep learning based disease diagnosis model.

Sci Rep. 2024-11-11

[4]
Advancements and Challenges in the Image-Based Diagnosis of Lung and Colon Cancer: A Comprehensive Review.

Cancer Inform. 2024-10-16

[5]
Identification of Anomalies in Lung and Colon Cancer Using Computer Vision-Based Swin Transformer with Ensemble Model on Histopathological Images.

Bioengineering (Basel). 2024-9-28

[6]
Colon and lung cancer classification from multi-modal images using resilient and efficient neural network architectures.

Heliyon. 2024-5-3

[7]
Mitotic Nuclei Segmentation and Classification Using Chaotic Butterfly Optimization Algorithm with Deep Learning on Histopathology Images.

Biomimetics (Basel). 2023-10-5

本文引用的文献

[1]
An Explainable Classification Method Based on Complex Scaling in Histopathology Images for Lung and Colon Cancer.

Diagnostics (Basel). 2023-4-29

[2]
Leveraging Marine Predators Algorithm with Deep Learning for Lung and Colon Cancer Diagnosis.

Cancers (Basel). 2023-3-3

[3]
Equilibrium Optimization Algorithm with Ensemble Learning Based Cervical Precancerous Lesion Classification Model.

Healthcare (Basel). 2022-12-25

[4]
Early detection of COPD based on graph convolutional network and small and weakly labeled data.

Med Biol Eng Comput. 2022-8

[5]
A convolution neural network with multi-level convolutional and attention learning for classification of cancer grades and tissue structures in colon histopathological images.

Comput Biol Med. 2022-8

[6]
Lung Cancer Detection Based on Kernel PCA-Convolution Neural Network Feature Extraction and Classification by Fast Deep Belief Neural Network in Disease Management Using Multimedia Data Sources.

Comput Intell Neurosci. 2022

[7]
Deep transfer learning based model for colorectal cancer histopathology segmentation: A comparative study of deep pre-trained models.

Int J Med Inform. 2022-3

[8]
Disease type detection in lung and colon cancer images using the complement approach of inefficient sets.

Comput Biol Med. 2021-10

[9]
Multi-Input Dual-Stream Capsule Network for Improved Lung and Colon Cancer Classification.

Diagnostics (Basel). 2021-8-16

[10]
Deep learning for colon cancer histopathological images analysis.

Comput Biol Med. 2021-9

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索