Suppr超能文献

使大语言模型与人类保持一致:对ChatGPT在药理学方面能力的全面调查。

Aligning Large Language Models with Humans: A Comprehensive Survey of ChatGPT's Aptitude in Pharmacology.

作者信息

Zhang Yingbo, Ren Shumin, Wang Jiao, Lu Junyu, Wu Cong, He Mengqiao, Liu Xingyun, Wu Rongrong, Zhao Jing, Zhan Chaoying, Du Dan, Zhan Zhajun, Singla Rajeev K, Shen Bairong

机构信息

Department of Pharmacy and Institutes for Systems Genetics, Frontiers Science Center for Disease-related Molecular Network, West China Hospital, Sichuan University, Chengdu, 610212, China.

Tropical Crops Genetic Resources Institute, Chinese Academy of Tropical Agricultural Sciences (CATAS), Haikou, 571101, China.

出版信息

Drugs. 2025 Feb;85(2):231-254. doi: 10.1007/s40265-024-02124-2. Epub 2024 Dec 20.

Abstract

BACKGROUND

Due to the lack of a comprehensive pharmacology test set, evaluating the potential and value of large language models (LLMs) in pharmacology is complex and challenging.

AIMS

This study aims to provide a test set reference for assessing the application potential of both general-purpose and specialized LLMs in pharmacology.

METHODS

We constructed a pharmacology test set consisting of three tasks: drug information retrieval, lead compound structure optimization, and research trend summarization and analysis. Subsequently, we compared the performance of general-purpose LLMs GPT-3.5 and GPT-4 on this test set.

RESULTS

The results indicate that GPT-3.5 and GPT-4 can better understand instructions for information retrieval, scheme optimization, and trend summarization in pharmacology, showing significant potential in basic pharmacology tasks, especially in areas such as drug pharmacological properties, pharmacokinetics, mode of action, and toxicity prediction. These general LLMs also effectively summarize the current challenges and future trends in this field, proving their valuable resource for interdisciplinary pharmacology researchers. However, the limitations of ChatGPT become evident when handling tasks such as drug identification queries, drug interaction information retrieval, and drug structure simulation optimization. It struggles to provide accurate interaction information for individual or specific drugs and cannot optimize specific drugs. This lack of depth in knowledge integration and analysis limits its application in scientific research and clinical exploration.

CONCLUSION

Therefore, exploring retrieval-augmented generation (RAG) or integrating proprietary knowledge bases and knowledge graphs into pharmacology-oriented ChatGPT systems would yield favorable results. This integration will further optimize the potential of LLMs in pharmacology.

摘要

背景

由于缺乏全面的药理学测试集,评估大语言模型(LLMs)在药理学中的潜力和价值复杂且具有挑战性。

目的

本研究旨在为评估通用和专用大语言模型在药理学中的应用潜力提供一个测试集参考。

方法

我们构建了一个药理学测试集,包括三个任务:药物信息检索、先导化合物结构优化以及研究趋势总结与分析。随后,我们在这个测试集上比较了通用大语言模型GPT - 3.5和GPT - 4的性能。

结果

结果表明,GPT - 3.5和GPT - 4能够更好地理解药理学中信息检索、方案优化和趋势总结的指令,在基础药理学任务中显示出显著潜力,特别是在药物药理学特性、药代动力学、作用模式和毒性预测等领域。这些通用大语言模型还能有效地总结该领域当前的挑战和未来趋势,证明它们对跨学科药理学研究人员是有价值的资源。然而,ChatGPT在处理药物识别查询、药物相互作用信息检索和药物结构模拟优化等任务时,其局限性变得明显。它难以提供针对单个或特定药物的准确相互作用信息,也无法优化特定药物。这种在知识整合和分析方面的深度不足限制了其在科研和临床探索中的应用。

结论

因此,探索检索增强生成(RAG)或将专有知识库和知识图谱集成到面向药理学的ChatGPT系统中会产生良好效果。这种集成将进一步优化大语言模型在药理学中的潜力

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/c391/11802629/e60686460be5/40265_2024_2124_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验