Aulenta Federico, Tucci Matteo, Cruz Viggi Carolina, Milia Stefano, Hosseini Seyedmehdi, Farru Gianluigi, Sethi Rajandrea, Bianco Carlo, Tosco Tiziana, Ioannidis Marios, Zanaroli Giulio, Ruffo Riccardo, Santoro Carlo, Marzocchi Ugo, Cassiani Giorgio, Peruzzo Luca
Water Research Institute (IRSA), National Research Council (CNR), Montelibretti (RM), Italy.
Institute of Environmental Geology and Geoengineering (IGAG), National Research Council (CNR), Cagliari, Italy.
Environ Sci Ecotechnol. 2024 Nov 24;23:100516. doi: 10.1016/j.ese.2024.100516. eCollection 2025 Jan.
Microbial electrochemical technologies (MET) can remove a variety of organic and inorganic pollutants from contaminated groundwater. However, despite significant laboratory-scale successes over the past decade, field-scale applications remain limited. We hypothesize that enhancing the electrochemical conductivity of the soil surrounding electrodes could be a groundbreaking and cost-effective alternative to deploying numerous high-surface-area electrodes in short distances. This could be achieved by injecting environmentally safe iron- or carbon-based conductive (nano)particles into the aquifer. Upon transport and deposition onto soil grains, these particles create an electrically conductive zone that can be exploited to control and fine-tune the delivery of electron donors or acceptors over large distances, thereby driving the process more efficiently. Beyond extending the radius of influence of electrodes, these diffuse electro-conductive zones (DECZ) could also promote the development of syntrophic anaerobic communities that degrade contaminants via direct interspecies electron transfer (DIET). In this review, we present the state-of-the-art in applying conductive materials for MET and DIET-based applications. We also provide a comprehensive overview of the physicochemical properties of candidate electrochemically conductive materials and related injection strategies suitable for field-scale implementation. Finally, we illustrate and critically discuss current and prospective electrochemical and geophysical methods for measuring soil electronic conductivity-both in the laboratory and in the field-before and after injection practices, which are crucial for determining the extent of DECZ. This review article provides critical information for a robust design and implementation of groundwater electro-bioremediation processes.
微生物电化学技术(MET)能够从受污染的地下水中去除多种有机和无机污染物。然而,尽管在过去十年中实验室规模取得了显著成功,但现场规模的应用仍然有限。我们假设,提高电极周围土壤的电化学导电性可能是一种开创性的、具有成本效益的替代方案,无需在短距离内部署大量高表面积电极。这可以通过向含水层中注入环境安全的铁基或碳基导电(纳米)颗粒来实现。这些颗粒在运输并沉积到土壤颗粒上后,会形成一个导电区域,可用于控制和微调电子供体或受体在大距离上的输送,从而更有效地驱动该过程。除了扩大电极的影响半径外,这些扩散导电区(DECZ)还可以促进通过种间直接电子转移(DIET)降解污染物的互营厌氧群落的发展。在这篇综述中,我们介绍了将导电材料应用于MET和基于DIET的应用的最新进展。我们还全面概述了候选电化学导电材料的物理化学性质以及适用于现场规模实施的相关注入策略。最后,我们阐述并批判性地讨论了在实验室和现场测量注入前后土壤电子导电性的当前和未来的电化学和地球物理方法,这对于确定DECZ的范围至关重要。这篇综述文章为地下水电生物修复过程的稳健设计和实施提供了关键信息。