Suppr超能文献

巴基斯坦阿迦汗大学医院急性心肌梗死表现与治疗中的性别差异识别:心血管疾病患者数据集中的自然语言处理应用

Identification of Gender Differences in Acute Myocardial Infarction Presentation and Management at Aga Khan University Hospital-Pakistan: Natural Language Processing Application in a Dataset of Patients With Cardiovascular Disease.

作者信息

Ngaruiya Christine, Samad Zainab, Tajuddin Salma, Nasim Zarmeen, Leff Rebecca, Farhad Awais, Pires Kyle, Khan Muhammad Alamgir, Hartz Lauren, Safdar Basmah

机构信息

Department of Emergency Medicine, Yale School of Medicine, New Haven, CT, United States.

Department of Emergency Medicine, Stanford School of Medicine, Palo Alto, CA, United States.

出版信息

JMIR Form Res. 2024 Dec 20;8:e42774. doi: 10.2196/42774.

Abstract

BACKGROUND

Ischemic heart disease is a leading cause of death globally with a disproportionate burden in low- and middle-income countries (LMICs). Natural language processing (NLP) allows for data enrichment in large datasets to facilitate key clinical research. We used NLP to assess gender differences in symptoms and management of patients hospitalized with acute myocardial infarction (AMI) at Aga Khan University Hospital-Pakistan.

OBJECTIVE

The primary objective of this study was to use NLP to assess gender differences in the symptoms and management of patients hospitalized with AMI at a tertiary care hospital in Pakistan.

METHODS

We developed an NLP-based methodology to extract AMI symptoms and medications from 5358 discharge summaries spanning the years 1988 to 2018. This dataset included patients admitted and discharged between January 1, 1988, and December 31, 2018, who were older than 18 years with a primary discharge diagnosis of AMI (using ICD-9 [International Classification of Diseases, Ninth Revision], diagnostic codes). The methodology used a fuzzy keyword-matching algorithm to extract AMI symptoms from the discharge summaries automatically. It first preprocesses the free text within the discharge summaries to extract passages indicating the presenting symptoms. Then, it applies fuzzy matching techniques to identify relevant keywords or phrases indicative of AMI symptoms, incorporating negation handling to minimize false positives. After manually reviewing the quality of extracted symptoms in a subset of discharge summaries through preliminary experiments, a similarity threshold of 80% was determined.

RESULTS

Among 1769 women and 3589 men with AMI, women had higher odds of presenting with shortness of breath (odds ratio [OR] 1.46, 95% CI 1.26-1.70) and lower odds of presenting with chest pain (OR 0.65, 95% CI 0.55-0.75), even after adjustment for diabetes and age. Presentation with abdominal pain, nausea, or vomiting was much less frequent but consistently more common in women (P<.001). "Ghabrahat," a culturally distinct term for a feeling of impending doom was used by 5.09% of women and 3.69% of men as presenting symptom for AMI (P=.06). First-line medication prescription (statin and β-blockers) was lower in women: women had nearly 30% lower odds (OR 0.71, 95% CI 0.57-0.90) of being prescribed statins, and they had 40% lower odds (OR 0.67, 95% CI 0.57-0.78) of being prescribed β-blockers.

CONCLUSIONS

Gender-based differences in clinical presentation and medication management were demonstrated in patients with AMI at a tertiary care hospital in Pakistan. The use of NLP for the identification of culturally nuanced clinical characteristics and management is feasible in LMICs and could be used as a tool to understand gender disparities and address key clinical priorities in LMICs.

摘要

背景

缺血性心脏病是全球主要的死亡原因,在低收入和中等收入国家(LMICs)负担尤为沉重。自然语言处理(NLP)可对大型数据集进行数据充实,以促进关键的临床研究。我们使用NLP评估了巴基斯坦阿迦汗大学医院急性心肌梗死(AMI)住院患者症状和治疗方面的性别差异。

目的

本研究的主要目的是使用NLP评估巴基斯坦一家三级护理医院中AMI住院患者症状和治疗方面的性别差异。

方法

我们开发了一种基于NLP的方法,从1988年至2018年的5358份出院小结中提取AMI症状和用药情况。该数据集包括1988年1月1日至2018年12月31日期间入院和出院的患者,年龄超过18岁,出院主要诊断为AMI(使用国际疾病分类第九版[ICD - 9]诊断代码)。该方法使用模糊关键词匹配算法从出院小结中自动提取AMI症状。它首先对出院小结中的自由文本进行预处理,以提取表明当前症状的段落。然后,它应用模糊匹配技术识别指示AMI症状的相关关键词或短语,并纳入否定处理以尽量减少假阳性。通过初步实验手动检查出院小结子集中提取症状的质量后,确定了80%的相似性阈值。

结果

在1769名患有AMI的女性和3589名男性中,即使在调整糖尿病和年龄后,女性出现呼吸急促的几率更高(优势比[OR] 1.46,95%置信区间1.26 - 1.70),出现胸痛的几率更低(OR 0.65,95%置信区间0.55 - 0.75)。出现腹痛、恶心或呕吐的情况较少见,但在女性中始终更常见(P <.001)。5.09%的女性和3.69%的男性将“Ghabrahat”(一种文化上独特的、表示厄运即将来临的感觉的术语)作为AMI的当前症状(P = 0.06)。女性一线药物处方(他汀类药物和β受体阻滞剂)较低:女性开具他汀类药物的几率低近30%(OR 0.71,95%置信区间0.57 - 0.90),开具β受体阻滞剂的几率低40%(OR 0.67,95%置信区间0.57 - 0.78)。

结论

在巴基斯坦一家三级护理医院的AMI患者中,临床表现和药物治疗管理存在基于性别的差异。在LMICs中,使用NLP识别具有文化细微差别的临床特征和治疗是可行的,并且可以用作了解性别差异和解决LMICs关键临床优先事项的工具。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验