Suppr超能文献

通过正定基本性测试加速极射线的枚举。

Accelerated enumeration of extreme rays through a positive-definite elementarity test.

作者信息

Mores Wannes, Bhonsale Satyajeet S, Logist Filip, Van Impe Jan F M

机构信息

Chemical and Biochemical Process Technology and Control (BioTeC+), KU Leuven, 9000 Gent, Belgium.

出版信息

Bioinformatics. 2024 Dec 26;41(1). doi: 10.1093/bioinformatics/btae723.

Abstract

MOTIVATION

Analysis of metabolic networks through extreme rays such as extreme pathways and elementary flux modes has been shown to be effective for many applications. However, due to the combinatorial explosion of candidate vectors, their enumeration is currently limited to small- and medium-scale networks (typically <200 reactions). Partial enumeration of the extreme rays is shown to be possible, but either relies on generating them one-by-one or by implementing a sampling step in the enumeration algorithms. Sampling-based enumeration can be achieved through the canonical basis approach (CBA) or the nullspace approach (NSA). Both algorithms are very efficient in medium-scale networks, but struggle with elementarity testing in sampling-based enumeration of larger networks.

RESULTS

In this paper, a novel elementarity test is defined and exploited, resulting in significant speedup of the enumeration. Even though NSA is currently considered more effective, the novel elementarity test allows CBA to significantly outpace NSA. This is shown through two case studies, ranging from a medium-scale network to a genome-scale metabolic network with over 600 reactions. In this study, extreme pathways are chosen as the extreme rays, but the novel elementarity test and CBA are equally applicable to the other types. With the increasing complexity of metabolic networks in recent years, CBA with the novel elementarity test shows even more promise as its advantages grows with increased network complexity. Given this scaling aspect, CBA is now the faster method for enumerating extreme rays in genome-scale metabolic networks.

AVAILABILITY AND IMPLEMENTATION

All case studies are implemented in Python. The codebase used to generate extreme pathways using the different approaches is available at https://gitlab.kuleuven.be/biotec-plus/pos-def-ep.

摘要

动机

通过诸如极端途径和基本通量模式等极端射线来分析代谢网络,已被证明在许多应用中是有效的。然而,由于候选向量的组合爆炸问题,目前它们的枚举仅限于中小型网络(通常反应数<200)。已表明可以对极端射线进行部分枚举,但要么依赖于逐个生成它们,要么在枚举算法中实施采样步骤。基于采样的枚举可以通过规范基方法(CBA)或零空间方法(NSA)来实现。这两种算法在中型网络中都非常高效,但在基于采样的大型网络枚举中进行基本性测试时会遇到困难。

结果

在本文中,定义并利用了一种新颖的基本性测试,从而显著加快了枚举速度。尽管目前认为NSA更有效,但这种新颖的基本性测试使CBA能够大大超越NSA。通过两个案例研究展示了这一点,案例范围从中型网络到具有600多个反应的基因组规模代谢网络。在本研究中,选择极端途径作为极端射线,但新颖的基本性测试和CBA同样适用于其他类型。近年来,随着代谢网络复杂性的增加,具有新颖基本性测试的CBA因其优势随着网络复杂性的增加而更加明显,展现出更大的前景。鉴于这种扩展性,CBA现在是在基因组规模代谢网络中枚举极端射线的更快方法。

可用性和实现方式

所有案例研究均用Python实现。使用不同方法生成极端途径的代码库可在https://gitlab.kuleuven.be/biotec-plus/pos-def-ep获取。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/00bb/11724715/b8da3a0312dd/btae723f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验