Suppr超能文献

预测用于化学品生产的代谢工程敲除策略:考虑竞争途径。

Predicting metabolic engineering knockout strategies for chemical production: accounting for competing pathways.

机构信息

Department of Computer Science, Technion-IIT, Haifa 32000, Israel.

出版信息

Bioinformatics. 2010 Feb 15;26(4):536-43. doi: 10.1093/bioinformatics/btp704. Epub 2009 Dec 23.

Abstract

MOTIVATION

Computational modeling in metabolic engineering involves the prediction of genetic manipulations that would lead to optimized microbial strains, maximizing the production rate of chemicals of interest. Various computational methods are based on constraint-based modeling, which enables to anticipate the effect of genetic manipulations on cellular metabolism considering a genome-scale metabolic network. However, current methods do not account for the presence of competing pathways in a metabolic network that may diverge metabolic flux away from producing a required chemical, resulting in lower (or even zero) chemical production rates in reality-making these methods somewhat over optimistic.

RESULTS

In this article, we describe a novel constraint-based method called RobustKnock that predicts gene deletion strategies that lead to the over-production of chemicals of interest, by accounting for the presence of competing pathways in the network. We describe results of applying RobustKnock to Escherichia coli's metabolic network towards the production of various chemicals, demonstrating its ability to provide more robust predictions than those obtained via current state-of-the-art methods.

摘要

动机

代谢工程中的计算建模涉及到预测遗传操作,这些操作将导致优化的微生物菌株,最大限度地提高感兴趣的化学品的生产速率。各种计算方法都是基于约束建模的,这使得我们可以考虑基因组规模的代谢网络,预测遗传操作对细胞代谢的影响。然而,目前的方法并没有考虑到代谢网络中存在的竞争途径,这些途径可能会使代谢通量偏离产生所需的化学物质,从而导致实际生产速率降低(甚至为零),这使得这些方法有些过于乐观。

结果

在本文中,我们描述了一种新的基于约束的方法,称为 RobustKnock,它通过考虑网络中竞争途径的存在,预测导致感兴趣的化学物质过度生产的基因缺失策略。我们描述了将 RobustKnock 应用于大肠杆菌代谢网络以生产各种化学物质的结果,证明了它能够提供比当前最先进的方法更稳健的预测。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验