Hazra Nabanita, Rudov Andrey A, Midya Jiarul, Babenyshev Andrey, Bochenek Steffen, Frenken Martin, Richtering Walter, Gompper Gerhard, Auth Thorsten, Potemkin Igor I, Crassous Jérôme J
Institute of Physical Chemistry, Rheinisch-Westfälische Technische Hochschule Aachen University, Aachen 52074, Germany.
Deutsches Wollforschungsinstitut Leibniz-Institute for Interactive Materials, Aachen 52074, Germany.
Proc Natl Acad Sci U S A. 2024 Dec 24;121(52):e2403690121. doi: 10.1073/pnas.2403690121. Epub 2024 Dec 20.
The adsorption of ellipsoidal colloidal particles on liquid interfaces induces interfacial deformation, resulting in anisotropic interface-mediated interactions and the formation of superstructures. Soft prolate-shaped microgels at the air-water interface offer an ideal model for studying spontaneous capillary-driven self-assembly due to their tunable aspect ratio, controlled functionality, and softness. These microgels consist of a polystyrene core surrounded by a cross-linked, fluorescently labeled poly([Formula: see text]-isopropylmethylacrylamide) shell. By uniaxially stretching the particles embedded in polyvinyl alcohol films, the aspect ratio [Formula: see text] can be finely adjusted. [Formula: see text] was found to vary from 1 to 8.8 as estimated in their swollen conformation at 20 C from confocal laser scanning microscopy. The spontaneous interfacial self-assembly at the air-water interface is investigated through fluorescence microscopy, theoretical calculations, and computer simulations. A structural transition occurs from a seemingly random assembly for small aspect ratios to compact clusters, which transform into a side-to-side assembly forming long chains for high aspect ratios. The influence of the poly([Formula: see text]-isopropylmethacrylamide) shell on the assembly indicates a significant [Formula: see text]-dependent microgel deformation. This deformation, in turn, determines the average distance between the particles. Consequently, capillary-driven self-assembly of soft anisotropic colloids becomes a powerful mechanism for structuring interfaces and designing microstructured materials.
椭圆形胶体颗粒在液体界面上的吸附会引起界面变形,从而导致各向异性的界面介导相互作用和超结构的形成。空气-水界面处的软长形微凝胶因其可调节的纵横比、可控的功能和柔软性,为研究自发的毛细管驱动自组装提供了一个理想模型。这些微凝胶由聚苯乙烯核和交联的、荧光标记的聚(N-异丙基甲基丙烯酰胺)壳组成。通过单轴拉伸嵌入聚乙烯醇薄膜中的颗粒,可以精细调节纵横比γ。根据共聚焦激光扫描显微镜在20℃下对其肿胀构象的估计,γ值在1到8.8之间变化。通过荧光显微镜、理论计算和计算机模拟研究了空气-水界面处的自发界面自组装。对于小纵横比,会发生从看似随机组装到紧密簇的结构转变,而对于高纵横比,紧密簇会转变为形成长链的侧向组装。聚(N-异丙基甲基丙烯酰胺)壳对组装的影响表明微凝胶变形显著依赖于γ。这种变形反过来又决定了颗粒之间的平均距离。因此,毛细管驱动的软各向异性胶体自组装成为构建界面和设计微结构材料的有力机制。