Suppr超能文献

EFR3介导PI4KA募集至质膜的分子基础

Molecular basis for plasma membrane recruitment of PI4KA by EFR3.

作者信息

Suresh Sushant, Shaw Alexandria L, Pemberton Joshua G, Scott Mackenzie K, Harris Noah J, Parson Matthew A H, Jenkins Meredith L, Rohilla Pooja, Alvarez-Prats Alejandro, Balla Tamas, Yip Calvin K, Burke John E

机构信息

Department of Biochemistry and Microbiology, University of Victoria, Victoria, BC V8W 2Y2, Canada.

Department of Biochemistry and Molecular Biology, The University of British Columbia, Vancouver, BC V6T 1Z3, Canada.

出版信息

Sci Adv. 2024 Dec 20;10(51):eadp6660. doi: 10.1126/sciadv.adp6660.

Abstract

The lipid kinase phosphatidylinositol 4 kinase III α (PI4KIIIα/PI4KA) is a master regulator of the lipid composition and asymmetry of the plasma membrane. PI4KA exists primarily in a heterotrimeric complex with its regulatory proteins TTC7 and FAM126. Fundamental to PI4KA activity is its targeted recruitment to the plasma membrane by the lipidated proteins EFR3A and EFR3B. Here, we report a cryogenic electron microscopy structure of the C terminus of EFR3A bound to the PI4KA-TTC7B-FAM126A complex, with extensive validation using both hydrogen deuterium exchange mass spectrometry, and mutational analysis. The EFR3A C terminus undergoes a disorder-order transition upon binding to the PI4KA complex, with an unexpected direct interaction with both TTC7B and FAM126A. Complex disrupting mutations in TTC7B, FAM126A, and EFR3 decrease PI4KA recruitment to the plasma membrane. Multiple posttranslational modifications and disease linked mutations map to this site, providing insight into how PI4KA membrane recruitment can be regulated and disrupted in human disease.

摘要

脂质激酶磷脂酰肌醇4激酶IIIα(PI4KIIIα/PI4KA)是质膜脂质组成和不对称性的主要调节因子。PI4KA主要与其调节蛋白TTC7和FAM126形成异源三聚体复合物存在。PI4KA活性的基础是其通过脂化蛋白EFR3A和EFR3B靶向募集到质膜。在此,我们报告了EFR3A C末端与PI4KA-TTC7B-FAM126A复合物结合的低温电子显微镜结构,并使用氢氘交换质谱和突变分析进行了广泛验证。EFR3A C末端在与PI4KA复合物结合时经历无序到有序的转变,与TTC7B和FAM126A都存在意外的直接相互作用。TTC7B、FAM126A和EFR3中的复合物破坏突变会减少PI4KA向质膜的募集。多个翻译后修饰和与疾病相关的突变定位到该位点,为了解PI4KA膜募集在人类疾病中如何被调节和破坏提供了线索。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/acb3/11661448/b4a4b443dde3/sciadv.adp6660-f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验