Suppr超能文献

利用饮食行为和机器学习算法预测中国老年人群的血脂异常情况

Predicting dyslipidemia in Chinese elderly adults using dietary behaviours and machine learning algorithms.

作者信息

Wang Biying, Lin Luotao, Wang Wenjun, Song Hualing, Xu Xianglong

机构信息

School of Public Health, Shanghai University of Traditional Chinese Medicine, Shanghai, China; Three Gorges University Hospital of Traditional Chinese Medicine & Yichang Hospital of Traditional Chinese Medicine, Yichang, Hubei, China.

Department of Individual, Family, and Community Education, University of New Mexico, Albuquerque, NM, USA.

出版信息

Public Health. 2025 Jan;238:274-279. doi: 10.1016/j.puhe.2024.12.025. Epub 2024 Dec 19.

Abstract

OBJECTIVES

We aimed to predict dyslipidemia risk in elderly Chinese adults using machine learning and dietary analysis for public health.

STUDY DESIGN

This cross-sectional study includes 13,668 Chinese adults aged 65 or older from the 2018 Chinese Longitudinal Healthy Longevity Survey.

METHODS

Dyslipidemia prediction was carried out using a variety of machine learning algorithms, including Support Vector Machine (SVM), Extreme Gradient Boosting (XGBoost), Random Forest (RF), Gaussian Naive Bayes (GNB), Gradient Boosting Machine (GBM), Adaptive Boosting Classifier (AdaBoost), Light Gradient Boosting Machine (LGBM), and K-Nearest Neighbour (KNN), as well as conventional logistic regression (LR).

RESULTS

The prevalence of dyslipidemia among eligible participants was 5.4 %. LGBM performed best in predicting dyslipidemia, followed by LR, XGBoost, SVM, GBM, AdaBoost, RF, GNB, and KNN (all AUC > 0.70). Frequency of nut product consumption, childhood water source, and housing types were key predictors for dyslipidemia.

CONCLUSIONS

Machine learning algorithms that integrated dietary behaviours accurately predicted dyslipidemia in elderly Chinese adults. Our research identified novel predictors such as the frequency of nut product consumption, the main source of drinking water during childhood, and housing types, which could potentially prevent and control dyslipidemia in elderly adults.

摘要

目的

我们旨在利用机器学习和饮食分析来预测中国老年成年人的血脂异常风险,以促进公共卫生。

研究设计

这项横断面研究纳入了来自2018年中国老年健康长寿纵向调查的13668名65岁及以上的中国成年人。

方法

使用多种机器学习算法进行血脂异常预测, 包括支持向量机 (SVM)、极端梯度提升 (XGBoost)、随机森林 (RF)、高斯朴素贝叶斯 (GNB)、梯度提升机 (GBM)、自适应提升分类器 (AdaBoost)、轻量级梯度提升机 (LGBM) 和K近邻 (KNN)以及传统逻辑回归 (LR)

结果

符合条件的参与者中血脂异常患病率为5.4%。LGBM在预测血脂异常方面表现最佳,其次是LR、XGBoost、SVM、GBM、AdaBoost、RF、GNB和KNN(所有AUC>0.70)坚果类产品消费频率、童年水源和住房类型是血脂异常的关键预测因素。

结论

整合饮食行为信息的机器学习算法能够准确预测中国老年成年人的血脂异常。我们的研究识别出了诸如坚果类产品消费频率、童年时期主要饮用水源以及住房类型等新的预测因素,这些因素可能有助于预防和控制老年人的血脂异常。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验