Suppr超能文献

超声心动图的深度学习可区分肥厚型心肌病患者心脏磁共振成像中钆增强晚期的有无。

Deep learning of echocardiography distinguishes between presence and absence of late gadolinium enhancement on cardiac magnetic resonance in patients with hypertrophic cardiomyopathy.

作者信息

Akita Keitaro, Kusunose Kenya, Haga Akihiro, Shimomura Taisei, Kosaka Yoshitaka, Ishiyama Katsunori, Hasegawa Kohei, Fifer Michael A, Maurer Mathew S, Shimada Yuichi J

机构信息

Division of Cardiology, Department of Medicine, Columbia University Irving Medical Center, 622 West 168th Street, PH 3-342, New York, NY, 10032, USA.

Department of Cardiovascular Medicine, Nephrology, and Neurology, Graduate School of Medicine, University of the Ryukyus, Okinawa, Japan.

出版信息

Echo Res Pract. 2024 Oct 14;11(1):23. doi: 10.1186/s44156-024-00059-8.

Abstract

BACKGROUND

Hypertrophic cardiomyopathy (HCM) can cause myocardial fibrosis, which can be a substrate for fatal ventricular arrhythmias and subsequent sudden cardiac death. Although late gadolinium enhancement (LGE) on cardiac magnetic resonance (CMR) represents myocardial fibrosis and is associated with sudden cardiac death in patients with HCM, CMR is resource-intensive, can carry an economic burden, and is sometimes contraindicated. In this study for patients with HCM, we aimed to distinguish between patients with positive and negative LGE on CMR using deep learning of echocardiographic images.

METHODS

In the cross-sectional study of patients with HCM, we enrolled patients who underwent both echocardiography and CMR. The outcome was positive LGE on CMR. Among the 323 samples, we randomly selected 273 samples (training set) and employed deep convolutional neural network (DCNN) of echocardiographic 5-chamber view to discriminate positive LGE on CMR. We also developed a reference model using clinical parameters with significant differences between patients with positive and negative LGE. In the remaining 50 samples (test set), we compared the area under the receiver-operating-characteristic curve (AUC) between a combined model using the reference model plus the DCNN-derived probability and the reference model.

RESULTS

Among the 323 CMR studies, positive LGE was detected in 160 (50%). The reference model was constructed using the following 7 clinical parameters: family history of HCM, maximum left ventricular (LV) wall thickness, LV end-diastolic diameter, LV end-systolic volume, LV ejection fraction < 50%, left atrial diameter, and LV outflow tract pressure gradient at rest. The discriminant model combining the reference model with DCNN-derived probability significantly outperformed the reference model in the test set (AUC 0.86 [95% confidence interval 0.76-0.96] vs. 0.72 [0.57-0.86], P = 0.04). The sensitivity, specificity, positive predictive value, and negative predictive value of the combined model were 0.84, 0.76, 0.78, and 0.83, respectively.

CONCLUSION

Compared to the reference model solely based on clinical parameters, our new model integrating the reference model and deep learning-based analysis of echocardiographic images demonstrated superiority in distinguishing LGE on CMR in patients with HCM. The novel deep learning-based method can be used as an assistive technology to facilitate the decision-making process of performing CMR with gadolinium enhancement.

摘要

背景

肥厚型心肌病(HCM)可导致心肌纤维化,这可能是致命性室性心律失常及随后心源性猝死的基础。尽管心脏磁共振成像(CMR)上的延迟钆增强(LGE)代表心肌纤维化,且与HCM患者的心源性猝死相关,但CMR资源消耗大、会带来经济负担,且有时存在禁忌证。在这项针对HCM患者的研究中,我们旨在通过对超声心动图图像进行深度学习,区分CMR上LGE阳性和阴性的患者。

方法

在对HCM患者的横断面研究中,我们纳入了同时接受超声心动图和CMR检查的患者。结局指标为CMR上LGE阳性。在323个样本中,我们随机选择273个样本(训练集),并采用超声心动图五腔视图的深度卷积神经网络(DCNN)来鉴别CMR上的LGE阳性。我们还使用LGE阳性和阴性患者之间存在显著差异的临床参数开发了一个参考模型。在其余50个样本(测试集)中,我们比较了使用参考模型加DCNN得出的概率的联合模型与参考模型之间的受试者操作特征曲线下面积(AUC)。

结果

在323项CMR研究中,160例(50%)检测到LGE阳性。参考模型使用以下7个临床参数构建:HCM家族史、左心室(LV)最大壁厚、LV舒张末期直径、LV收缩末期容积、LV射血分数<50%、左心房直径以及静息时LV流出道压力阶差。在测试集中,将参考模型与DCNN得出的概率相结合的判别模型显著优于参考模型(AUC 0.86[95%置信区间0.76 - 0.96]对0.72[0.57 - 0.86],P = 0.04)。联合模型的敏感性、特异性、阳性预测值和阴性预测值分别为0.84、0.76、0.78和0.83。

结论

与仅基于临床参数的参考模型相比,我们整合参考模型和基于深度学习的超声心动图图像分析的新模型在区分HCM患者CMR上的LGE方面表现出优越性。这种基于深度学习的新方法可作为一种辅助技术,以促进进行钆增强CMR的决策过程。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/28d4/11472433/a32bc27b4020/44156_2024_59_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验