Suppr超能文献

基于特征交互暹罗图编码器的图像分析,用于从肺癌组织病理学图像预测STAS

Feature-interactive Siamese graph encoder-based image analysis to predict STAS from histopathology images in lung cancer.

作者信息

Pan Liangrui, Liang Qingchun, Zeng Wenwu, Peng Yijun, Zhao Zhenyu, Liang Yiyi, Luo Jiadi, Wang Xiang, Peng Shaoliang

机构信息

College of Computer Science and Electronic Engineering, Hunan University, Changsha, China.

Department of Pathology, The Second Xiangya Hospital, Central South University, Changsha, Hunan, China.

出版信息

NPJ Precis Oncol. 2024 Dec 20;8(1):285. doi: 10.1038/s41698-024-00771-y.

Abstract

Spread through air spaces (STAS) is a distinct invasion pattern in lung cancer, crucial for prognosis assessment and guiding surgical decisions. Histopathology is the gold standard for STAS detection, yet traditional methods are subjective, time-consuming, and prone to misdiagnosis, limiting large-scale applications. We present VERN, an image analysis model utilizing a feature-interactive Siamese graph encoder to predict STAS from lung cancer histopathological images. VERN captures spatial topological features with feature sharing and skip connections to enhance model training. Using 1,546 histopathology slides, we built a large single-cohort STAS lung cancer dataset. VERN achieved an AUC of 0.9215 in internal validation and AUCs of 0.8275 and 0.8829 in frozen and paraffin-embedded test sections, respectively, demonstrating clinical-grade performance. Validated on a single-cohort and three external datasets, VERN showed robust predictive performance and generalizability, providing an open platform ( http://plr.20210706.xyz:5000/ ) to enhance STAS diagnosis efficiency and accuracy.

摘要

气腔播散(STAS)是肺癌中一种独特的浸润模式,对预后评估和手术决策指导至关重要。组织病理学是STAS检测的金标准,但传统方法主观、耗时且容易误诊,限制了大规模应用。我们提出了VERN,这是一种图像分析模型,利用特征交互暹罗图编码器从肺癌组织病理学图像中预测STAS。VERN通过特征共享和跳跃连接捕获空间拓扑特征,以增强模型训练。我们使用1546张组织病理学切片构建了一个大型单队列STAS肺癌数据集。VERN在内部验证中的AUC为0.9215,在冰冻和石蜡包埋测试切片中的AUC分别为0.8275和0.8829,显示出临床级性能。在单队列和三个外部数据集上进行验证后,VERN显示出强大的预测性能和通用性,提供了一个开放平台(http://plr.20210706.xyz:5000/)以提高STAS诊断效率和准确性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/76f5/11662006/f044f374ba1a/41698_2024_771_Fig1_HTML.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验