Suppr超能文献

一种用于微创胸腔镜肺段切除术中增强现实视觉的新型三维图像配准技术。

A novel 3D image registration technique for augmented reality vision in minimally invasive thoracoscopic pulmonary segmentectomy.

作者信息

Peek J J, Zhang X, Hildebrandt K, Max S A, Sadeghi A H, Bogers A J J C, Mahtab E A F

机构信息

Department of Cardiothoracic Surgery, Erasmus University Medical Center, Rotterdam, The Netherlands.

Computer Vision Lab, TU Delft, Delft, The Netherlands.

出版信息

Int J Comput Assist Radiol Surg. 2025 Apr;20(4):787-795. doi: 10.1007/s11548-024-03308-7. Epub 2024 Dec 20.

Abstract

PURPOSE

In this feasibility study, we aimed to create a dedicated pulmonary augmented reality (AR) workflow to enable a semi-automated intraoperative overlay of the pulmonary anatomy during video-assisted thoracoscopic surgery (VATS) or robot-assisted thoracoscopic surgery (RATS).

METHODS

Initially, the stereoscopic cameras were calibrated to obtain the intrinsic camera parameters. Intraoperatively, stereoscopic images were recorded and a 3D point cloud was generated from these images. By manually selecting the bifurcation key points, the 3D segmentation (from the diagnostic CT scan) was registered onto the intraoperative 3D point cloud.

RESULTS

Image reprojection errors were 0.34 and 0.22 pixels for the VATS and RATS cameras, respectively. We created disparity maps and point clouds for all eight patients. Time for creation of the 3D AR overlay was 5 min. Validation of the point clouds was performed, resulting in a median absolute error of 0.20 mm [IQR 0.10-0.54]. We were able to visualize the AR overlay and identify the arterial bifurcations adequately for five patients. In addition to creating AR overlays of the visible or invisible structures intraoperatively, we successfully visualized branch labels and altered the transparency of the overlays.

CONCLUSION

An algorithm was developed transforming the operative field into a 3D point cloud surface. This allowed for an accurate registration and visualization of preoperative 3D models. Using this system, surgeons can navigate through the patient's anatomy intraoperatively, especially during crucial moments, by visualizing otherwise invisible structures. This proposed registration method lays the groundwork for automated intraoperative AR navigation during minimally invasive pulmonary resections.

摘要

目的

在本可行性研究中,我们旨在创建一个专门的肺部增强现实(AR)工作流程,以在电视辅助胸腔镜手术(VATS)或机器人辅助胸腔镜手术(RATS)期间实现肺部解剖结构的半自动术中叠加。

方法

首先,对立体摄像机进行校准以获取摄像机固有参数。术中,记录立体图像并从这些图像生成三维点云。通过手动选择分叉关键点,将(来自诊断性CT扫描的)三维分割结果配准到术中三维点云。

结果

VATS和RATS摄像机的图像重投影误差分别为0.34像素和0.22像素。我们为所有8名患者创建了视差图和点云。创建三维AR叠加的时间为5分钟。对点云进行了验证,中位绝对误差为0.20毫米[四分位距0.10 - 0.54]。我们能够为5名患者充分可视化AR叠加并识别动脉分叉。除了在术中创建可见或不可见结构的AR叠加外,我们还成功可视化了分支标签并改变了叠加的透明度。

结论

开发了一种算法,可将手术视野转换为三维点云表面。这使得术前三维模型能够进行准确的配准和可视化。使用该系统,外科医生在术中可以通过可视化原本不可见的结构在患者解剖结构中导航,尤其是在关键时刻。这种提出的配准方法为微创肺切除术中的自动术中AR导航奠定了基础。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/2532/12034595/8a45e0c3b39f/11548_2024_3308_Fig1_HTML.jpg

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验