Spagnolo Paolo, Tweddell David, Cela Enis, Daley Mark, Clarson Cheril, Rupar C Anthony, Stranges Saverio, Bravo Michael, Cepinskas Gediminas, Fraser Douglas D
Medicine, Campus Bio-Medico University of Rome, Via Alvaro del Portillo 21, 00128, Rome, Italy.
Computer Science, Western University, London, ON, N6A 3K7, Canada.
Mol Med. 2024 Dec 20;30(1):250. doi: 10.1186/s10020-024-01046-9.
Diabetic ketoacidosis (DKA) is a serious complication of type 1 diabetes (T1D), arising from relative insulin deficiency and leading to hyperglycemia, ketonemia, and metabolic acidosis. Early detection and treatment are essential to prevent severe outcomes. This pediatric case-control study utilized plasma metabolomics to explore metabolic alterations associated with DKA and to identify predictive metabolite patterns.
We examined 34 T1D participants, including 17 patients admitted with severe DKA and 17 age- and sex-matched individuals in insulin-controlled states. A total of 215 plasma metabolites were analyzed using proton nuclear magnetic resonance and direct-injection liquid chromatography/mass spectrometry. Multivariate statistical methods, machine learning techniques, and bioinformatics were employed for data analysis.
After adjusting for multiple comparisons, 65 metabolites were found to differ significantly between the groups (28 increased and 37 decreased). Metabolomics profiling demonstrated 100% accuracy in differentiating severe DKA from insulin-controlled states. Random forest analysis indicated that classification accuracy was primarily influenced by changes in ketone bodies, acylcarnitines, and phosphatidylcholines. Additionally, groups of metabolites (ranging in number from 8 to 18) correlated with key clinical and biochemical variables, including pH, bicarbonate, glucose, HbA1c, and Glasgow Coma Scale scores.
These findings underscore significant metabolic disturbances in severe DKA and their associations with critical clinical indicators. Future investigations should explore if metabolic alterations in severe DKA can identify patients at increased risk of complications and/or guide future therapeutic interventions.
糖尿病酮症酸中毒(DKA)是1型糖尿病(T1D)的一种严重并发症,由相对胰岛素缺乏引起,导致高血糖、酮血症和代谢性酸中毒。早期检测和治疗对于预防严重后果至关重要。这项儿科病例对照研究利用血浆代谢组学来探索与DKA相关的代谢改变,并识别预测性代谢物模式。
我们检查了34名T1D参与者,包括17名因严重DKA入院的患者和17名年龄和性别匹配的处于胰岛素控制状态的个体。使用质子核磁共振和直接进样液相色谱/质谱分析了总共215种血浆代谢物。采用多变量统计方法、机器学习技术和生物信息学进行数据分析。
在调整多重比较后,发现两组之间有65种代谢物存在显著差异(28种增加,37种减少)。代谢组学分析在区分严重DKA和胰岛素控制状态方面显示出100%的准确性。随机森林分析表明,分类准确性主要受酮体、酰基肉碱和磷脂酰胆碱变化的影响。此外,多组代谢物(数量从8到18种不等)与关键临床和生化变量相关,包括pH值、碳酸氢盐、血糖、糖化血红蛋白和格拉斯哥昏迷量表评分。
这些发现强调了严重DKA中显著的代谢紊乱及其与关键临床指标的关联。未来的研究应探讨严重DKA中的代谢改变是否能够识别并发症风险增加的患者和/或指导未来的治疗干预。