Lanotte Francesco, Okita Shusuke, O'Brien Megan K, Jayaraman Arun
Max Nader Lab for Rehabilitation Technologies and Outcomes Research, Shirley Ryan AbilityLab, 355 E Erie St, Chicago, IL, 60611, USA.
Department of Physical Medicine and Rehabilitation, Northwestern University, 710 N Lake Shore Dr, Chicago, IL, 60611, USA.
J Neuroeng Rehabil. 2024 Dec 21;21(1):219. doi: 10.1186/s12984-024-01521-8.
Clinical gait analysis plays a pivotal role in diagnosing and treating walking impairments. Inertial measurement units (IMUs) offer a low-cost, portable, and practical alternative to traditional gait analysis equipment, making these techniques more accessible beyond specialized clinics. Previous work and algorithms developed for specific clinical populations, like in individuals with Parkinson's disease, often do not translate effectively to other groups, such as stroke survivors, who exhibit significant variability in their gait patterns. The Salarian gait segmentation algorithm (SGSA) has demonstrated the potential to detect gait events and subsequently estimate clinical measures of gait speed, stride time, and other temporal parameters using two leg-worn IMUs in individuals with Parkinson's disease. However, the distinct gait impairments in stroke survivors, including hemiparesis, spasticity, and muscle weakness, can interfere with SGSA performance. Thus, the objective of this study was to develop and test an enhanced gait segmentation algorithm (EGSA) to capture temporal gait parameters in individuals with stroke.
Forty-one individuals with stroke were recruited from two acute rehabilitation settings and completed brief walking bouts with two leg-worn IMUs. We compared foot-off (FO), foot contact (FC), and temporal gait parameters computed from the SGSA and EGSA against ground truth measurements from an instrumented mat.
The EGSA demonstrated greater accuracy than the SGSA when detecting gait events within one second, for both FO (96% vs. 90%) and FC (94% vs. 91%). The EGSA also demonstrated lower error than the SGSA when detecting paretic FC, and FO events in slow, asymmetrical, and non-paretic footfalls. Temporal gait parameters from the EGSA had high reliability (ICC > 0.90) for stride time, step time, stance time, and double support time across gait speeds and levels of asymmetry.
This approach has the potential to enhance the accuracy and validity of IMU-based gait analysis in individuals with stroke, thereby enhancing clinicians' ability to monitor and intervene for gait impairments in a rehabilitation setting and beyond.
临床步态分析在诊断和治疗行走障碍方面起着关键作用。惯性测量单元(IMU)为传统步态分析设备提供了一种低成本、便携且实用的替代方案,使这些技术在专业诊所以外的地方更容易获得。先前针对特定临床人群(如帕金森病患者)开发的工作和算法,通常无法有效地应用于其他群体,如中风幸存者,他们的步态模式存在显著差异。萨拉里安步态分割算法(SGSA)已证明有潜力检测步态事件,并随后使用两个腿部佩戴的IMU估计帕金森病患者的步态速度、步幅时间和其他时间参数的临床测量值。然而,中风幸存者独特的步态障碍,包括偏瘫、痉挛和肌肉无力,可能会干扰SGSA的性能。因此,本研究的目的是开发并测试一种增强型步态分割算法(EGSA),以捕捉中风患者的时间步态参数。
从两个急性康复机构招募了41名中风患者,他们使用两个腿部佩戴的IMU完成了简短的步行测试。我们将从SGSA和EGSA计算出的足跟离地(FO)、足接触(FC)和时间步态参数与仪器化垫子的地面真实测量值进行了比较。
在检测一秒内的步态事件时,EGSA在检测FO(96%对90%)和FC(94%对91%)方面比SGSA具有更高的准确性。在检测患侧FC以及慢、不对称和非患侧足落地时的FO事件时,EGSA的误差也低于SGSA。EGSA的时间步态参数在不同步态速度和不对称程度下,步幅时间、步长、站立时间和双支撑时间具有较高的可靠性(组内相关系数>0.90)。
这种方法有可能提高基于IMU的中风患者步态分析的准确性和有效性,从而增强临床医生在康复环境及其他环境中监测和干预步态障碍的能力。