Suppr超能文献

一种新型膜相关蛋白助力细菌在玉米上定殖。

A Novel Membrane-Associated Protein Aids Bacterial Colonization of Maize.

作者信息

Venkataraman Maya, Infante Valentina, Sabat Grzegorz, Sanos-Giles Kai, Ané Jean-Michel, Pfleger Brian F

机构信息

Department of Chemical and Biological Engineering, University of Wisconsin - Madison, Madison, Wisconsin 53706, United States.

Department of Bacteriology, University of Wisconsin - Madison, Madison, Wisconsin 53706, United States.

出版信息

ACS Synth Biol. 2025 Jan 17;14(1):206-215. doi: 10.1021/acssynbio.4c00489. Epub 2024 Dec 21.

Abstract

The soil environment affected by plant roots and their exudates, termed the rhizosphere, significantly impacts crop health and is an attractive target for engineering desirable agricultural traits. Engineering microbes in the rhizosphere is one approach to improving crop yields that directly minimizes the number of genetic modifications made to plants. Soil microbes have the potential to assist with nutrient acquisition, heat tolerance, and drought response if they can persist in the rhizosphere in the correct numbers. Unfortunately, the mechanisms by which microbes adhere and persist on plant roots are poorly understood, limiting their application. This study examined the membrane proteome shift upon adherence to roots in two bacteria of interest, and From this surface proteome data, we identified a novel membrane protein from a nonlaboratory isolate of that increases binding to maize roots using unlabeled proteomics. When this protein was moved from the environmental isolate to a common lab strain ( KT2440), we observed increased binding capabilities of KT2440 to both abiotic mimic surfaces and maize roots. We observed a similar increased binding capability to maize roots when the protein was heterologously expressed in and . With the discovery of this novel binding protein, we outline a strategy for harnessing natural selection and wild isolates to build more persistent strains of bacteria for field applications and plant growth promotion.

摘要

受植物根系及其分泌物影响的土壤环境,即根际,对作物健康有重大影响,是改良理想农业性状的一个有吸引力的目标。对根际微生物进行工程改造是提高作物产量的一种方法,这种方法能直接减少对植物进行基因改造的数量。如果土壤微生物能够以合适的数量在根际持续存在,它们就有潜力帮助植物获取养分、耐热及应对干旱。不幸的是,人们对微生物附着并在植物根系上持续存在的机制了解甚少,这限制了它们的应用。本研究检测了两种目标细菌在附着于根系时的膜蛋白质组变化。根据这些表面蛋白质组数据,我们利用非标记蛋白质组学方法,从一种非实验室分离株的 中鉴定出一种新的膜蛋白,该蛋白能增强与玉米根系的结合。当将这种蛋白从环境分离株转移到常见的实验室菌株(KT2440)时,我们观察到KT2440对非生物模拟表面和玉米根系的结合能力增强。当该蛋白在 和 中异源表达时,我们也观察到其对玉米根系的结合能力有类似的增强。随着这种新型结合蛋白的发现,我们概述了一种利用自然选择和野生分离株构建更持久的细菌菌株用于田间应用和促进植物生长的策略。

相似文献

1
A Novel Membrane-Associated Protein Aids Bacterial Colonization of Maize.
ACS Synth Biol. 2025 Jan 17;14(1):206-215. doi: 10.1021/acssynbio.4c00489. Epub 2024 Dec 21.
2
Benzoxazinoids in root exudates of maize attract Pseudomonas putida to the rhizosphere.
PLoS One. 2012;7(4):e35498. doi: 10.1371/journal.pone.0035498. Epub 2012 Apr 24.
4
Plant growth promotion by Pseudomonas putida KT2440 under saline stress: role of eptA.
Appl Microbiol Biotechnol. 2020 May;104(10):4577-4592. doi: 10.1007/s00253-020-10516-z. Epub 2020 Mar 27.
5
Comprehensive proteome analysis of the response of Pseudomonas putida KT2440 to the flavor compound vanillin.
J Proteomics. 2014 Sep 23;109:212-27. doi: 10.1016/j.jprot.2014.07.006. Epub 2014 Jul 12.
6
Genomic analysis reveals the major driving forces of bacterial life in the rhizosphere.
Genome Biol. 2007;8(9):R179. doi: 10.1186/gb-2007-8-9-r179.
9
In vivo gene expression of Pseudomonas putida KT2440 in the rhizosphere of different plants.
Microb Biotechnol. 2013 May;6(3):307-13. doi: 10.1111/1751-7915.12037. Epub 2013 Feb 25.
10
Role of iron and the TonB system in colonization of corn seeds and roots by Pseudomonas putida KT2440.
Environ Microbiol. 2005 Mar;7(3):443-9. doi: 10.1111/j.1462-2920.2005.00720.x.

本文引用的文献

2
Synthetic Biology Toolbox for Nitrogen-Fixing Soil Microbes.
ACS Synth Biol. 2023 Dec 15;12(12):3623-3634. doi: 10.1021/acssynbio.3c00414. Epub 2023 Nov 21.
3
Improved global protein homolog detection with major gains in function identification.
Proc Natl Acad Sci U S A. 2023 Feb 28;120(9):e2211823120. doi: 10.1073/pnas.2211823120. Epub 2023 Feb 24.
4
Klebsiella pneumoniae l-Fucose Metabolism Promotes Gastrointestinal Colonization and Modulates Its Virulence Determinants.
Infect Immun. 2022 Oct 20;90(10):e0020622. doi: 10.1128/iai.00206-22. Epub 2022 Sep 21.
5
Dynamic and single cell characterization of a CRISPR-interference toolset in KT2440 for β-ketoadipate production from -coumarate.
Metab Eng Commun. 2022 Aug 28;15:e00204. doi: 10.1016/j.mec.2022.e00204. eCollection 2022 Dec.
6
SignalP 6.0 predicts all five types of signal peptides using protein language models.
Nat Biotechnol. 2022 Jul;40(7):1023-1025. doi: 10.1038/s41587-021-01156-3. Epub 2022 Jan 3.
7
Differential Root Exudation and Architecture for Improved Growth of Wheat Mediated by Phosphate Solubilizing Bacteria.
Front Microbiol. 2021 Oct 15;12:744094. doi: 10.3389/fmicb.2021.744094. eCollection 2021.
8
Microbial methylglyoxal metabolism contributes towards growth promotion and stress tolerance in plants.
Environ Microbiol. 2022 Jun;24(6):2817-2836. doi: 10.1111/1462-2920.15743. Epub 2021 Sep 1.
9
VolcaNoseR is a web app for creating, exploring, labeling and sharing volcano plots.
Sci Rep. 2020 Nov 25;10(1):20560. doi: 10.1038/s41598-020-76603-3.
10
Quorum sensing signal autoinducer-2 promotes root colonization of Bacillus velezensis SQR9 by affecting biofilm formation and motility.
Appl Microbiol Biotechnol. 2020 Aug;104(16):7177-7185. doi: 10.1007/s00253-020-10713-w. Epub 2020 Jul 4.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验