Suppr超能文献

结合深度学习的自然主义多模态情感数据能够推动对情感的理论理解。

Naturalistic multimodal emotion data with deep learning can advance the theoretical understanding of emotion.

作者信息

Angkasirisan Thanakorn

机构信息

Department of Experimental Psychology, University of Oxford, Oxford, UK.

出版信息

Psychol Res. 2024 Dec 21;89(1):36. doi: 10.1007/s00426-024-02068-y.

Abstract

What are emotions? Despite being a century-old question, emotion scientists have yet to agree on what emotions exactly are. Emotions are diversely conceptualised as innate responses (evolutionary view), mental constructs (constructivist view), cognitive evaluations (appraisal view), or self-organising states (dynamical systems view). This enduring fragmentation likely stems from the limitations of traditional research methods, which often adopt narrow methodological approaches. Methods from artificial intelligence (AI), particularly those leveraging big data and deep learning, offer promising approaches for overcoming these limitations. By integrating data from multimodal markers of emotion, including subjective experiences, contextual factors, brain-bodily physiological signals and expressive behaviours, deep learning algorithms can uncover and map their complex relationships within multidimensional spaces. This multimodal emotion framework has the potential to provide novel, nuanced insights into long-standing questions, such as whether emotion categories are innate or learned and whether emotions exhibit coherence or degeneracy, thereby refining emotion theories. Significant challenges remain, particularly in obtaining comprehensive naturalistic multimodal emotion data, highlighting the need for advances in synchronous measurement of naturalistic multimodal emotion.

摘要

情绪是什么?尽管这是一个存在了百年的问题,但情绪科学家们仍未就情绪到底是什么达成一致。情绪被以多种方式概念化,如先天反应(进化观点)、心理建构(建构主义观点)、认知评价(评价观点)或自组织状态(动力系统观点)。这种长期存在的碎片化现象可能源于传统研究方法的局限性,这些方法往往采用狭隘的方法论途径。人工智能(AI)的方法,尤其是那些利用大数据和深度学习的方法,为克服这些局限性提供了有前景的途径。通过整合来自情绪多模态标记的数据,包括主观体验、情境因素、脑-体生理信号和表达行为,深度学习算法可以在多维空间中揭示并描绘它们之间的复杂关系。这种多模态情绪框架有可能为长期存在的问题提供新颖、细致入微的见解,比如情绪类别是天生的还是后天习得的,以及情绪是表现出连贯性还是退化性,从而完善情绪理论。重大挑战依然存在,尤其是在获取全面的自然主义多模态情绪数据方面,这凸显了在自然主义多模态情绪同步测量方面取得进展的必要性。

相似文献

5
Emotion recognition in EEG signals using deep learning methods: A review.基于深度学习方法的 EEG 信号情绪识别:综述。
Comput Biol Med. 2023 Oct;165:107450. doi: 10.1016/j.compbiomed.2023.107450. Epub 2023 Sep 9.

本文引用的文献

3
Beyond Nature Versus Nurture: the Emergence of Emotion.超越先天与后天:情感的出现
Affect Sci. 2023 Aug 30;4(3):443-452. doi: 10.1007/s42761-023-00212-2. eCollection 2023 Sep.
4
Advancing Naturalistic Affective Science with Deep Learning.利用深度学习推动自然主义情感科学发展。
Affect Sci. 2023 Aug 25;4(3):550-562. doi: 10.1007/s42761-023-00215-z. eCollection 2023 Sep.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验