Gandhi Roshani, Chopade Nishant, Deshmukh Prashant K, Ingle Rahul G, Harde Minal, Lakade Sameer, More Mahesh P, Tade Rahul S, Bhadane Mahesh S
Department of Pharmacognosy, Laddhad College of Pharmacy, Dist-Buldhana, M.S. 443 001, India.
Department of Pharmaceutics, Dr. Rajendra Gode College of Pharmacy, Malkapur, Dist-Buldhana, M.S. 443 101, India.
Carbohydr Res. 2025 Mar;549:109357. doi: 10.1016/j.carres.2024.109357. Epub 2024 Dec 17.
The discovery of branched molecules like dextrin by Schardinger in 1903 marked the inception of cyclodextrin (CD) utilization, catalyzing its journey from laboratory experimentation to widespread commercialization within the pharmaceutical industry. CD, a cyclic oligosaccharide containing glucopyranose units, acts as a versatile guest molecule, forming inclusion complexes (ICs) with various host molecules. Computational studies have become instrumental in elucidating the intricate interactions between β-CD and guest molecules, enabling the prediction of binding energy, forces, affinity, and complex stability. The computational approach has established robust correlations with experimental outcomes, enhancing our understanding of CD-mediated complexation phenomena. This comprehensive review delves into the CD based Inclusion complex (CDIC) formation and a myriad of components, including drug molecules, amino acids, vitamins, and volatile oils. These complexes find applications across diverse industries, ranging from pharmaceuticals to nutraceuticals, food, fragrance, and beyond. In the pharmaceutical realm, β- CDICs offer innovative solutions for enhancing drug solubility, stability, and bioavailability, thus overcoming formulation challenges associated with poorly water-soluble drugs. Furthermore, the versatility of CDs extends beyond pharmaceuticals, with applications in the encapsulation of phytoactive compounds in nutraceuticals and the enhancing flavor, aroma in food and fragrance industries. This review underscores the pivotal role of CDs conjugation in modern drug delivery systems, emphasizing the importance of interdisciplinary approaches that integrate computational modeling with experimental validation. As the pharmaceutical landscape continues to evolve, CDs-based formulations stand poised to drive innovation and address the ever-growing demand for efficacious and patient-friendly drug delivery solutions.
1903年,沙尔丁格发现了像糊精这样的支链分子,这标志着环糊精(CD)利用的开端,推动了其从实验室实验到制药行业广泛商业化的进程。CD是一种含有吡喃葡萄糖单元的环状寡糖,作为一种多功能客体分子,可与各种主体分子形成包合物(ICs)。计算研究有助于阐明β-CD与客体分子之间的复杂相互作用,从而能够预测结合能、作用力、亲和力和络合物稳定性。该计算方法已与实验结果建立了可靠的相关性,加深了我们对CD介导的络合现象的理解。这篇综述深入探讨了基于CD的包合物(CDIC)的形成以及众多成分,包括药物分子、氨基酸、维生素和挥发油。这些络合物在从制药到营养保健品、食品、香料等不同行业都有应用。在制药领域,β-CDICs为提高药物溶解度、稳定性和生物利用度提供了创新解决方案,从而克服了与难溶性药物相关的制剂挑战。此外,CD的多功能性不仅限于制药领域,还应用于营养保健品中植物活性化合物的包封以及食品和香料行业中风味和香气的增强。这篇综述强调了CD共轭在现代药物递送系统中的关键作用,强调了将计算建模与实验验证相结合的跨学科方法的重要性。随着制药领域不断发展,基于CD的制剂有望推动创新,并满足对有效且对患者友好的药物递送解决方案日益增长的需求。