Suppr超能文献

DisorderUnetLM:验证用于高效蛋白质内在无序预测的ProteinUnet。

DisorderUnetLM: Validating ProteinUnet for efficient protein intrinsic disorder prediction.

作者信息

Kotowski Krzysztof, Roterman Irena, Stapor Katarzyna

机构信息

Department of Applied Informatics, Silesian University of Technology, Akademicka 16, 44-100, Gliwice, Poland.

Department of Bioinformatics and Telemedicine, Jagiellonian University Medical College, Medyczna 7, 30-688, Kraków, Poland.

出版信息

Comput Biol Med. 2025 Feb;185:109586. doi: 10.1016/j.compbiomed.2024.109586. Epub 2024 Dec 20.

Abstract

The prediction of intrinsic disorder regions has significant implications for understanding protein functions and dynamics. It can help to discover novel protein-protein interactions essential for designing new drugs and enzymes. Recently, a new generation of predictors based on protein language models (pLMs) is emerging. These algorithms reach state-of-the-art accuracy without calculating time-consuming multiple sequence alignments (MSAs). This article introduces the new DisorderUnetLM disorder predictor, which builds upon the idea of ProteinUnet. It uses the Attention U-Net convolutional network and incorporates features from the ProtTrans pLM. DisorderUnetLM achieves top results in the direct comparison with recent predictors exploiting MSAs and pLMs. Moreover, among 43 predictors on the latest CAID-2 benchmark, it ranks 1st for the NOX subset in terms of the ROC-AUC metric (0.844) and 2nd for the AP metric (0.596). For the CAID-2 PDB subset, it ranks in the top 10 (ROC-AUC of 0.924 and AP of 0.862). The code and model are publicly available and fully reproducible at doi.org/10.24433/CO.7350682.v1.

摘要

预测内在无序区域对于理解蛋白质功能和动力学具有重要意义。它有助于发现对设计新药和酶至关重要的新型蛋白质-蛋白质相互作用。最近,基于蛋白质语言模型(pLMs)的新一代预测器正在兴起。这些算法无需计算耗时的多序列比对(MSA)就能达到当前的最高准确率。本文介绍了新的DisorderUnetLM无序预测器,它基于ProteinUnet的理念构建。它使用注意力U-Net卷积网络并整合了ProtTrans pLM的特征。在与利用MSA和pLMs的近期预测器的直接比较中,DisorderUnetLM取得了顶尖的结果。此外,在最新的CAID-2基准测试中的43个预测器中,就ROC-AUC指标而言,它在NOX子集中排名第一(0.844),就AP指标而言排名第二(0.596)。对于CAID-2 PDB子集,它排名前十(ROC-AUC为0.924,AP为0.862)。代码和模型可在doi.org/10.24433/CO.7350682.v1上公开获取且完全可重现。

相似文献

3
Computational Prediction of Linear Interacting Peptides.线性相互作用肽的计算预测。
Methods Mol Biol. 2025;2867:233-245. doi: 10.1007/978-1-0716-4196-5_14.
5
PUNCH2: Explore the strategy for intrinsically disordered protein predictor.PUNCH2:探索内在无序蛋白质预测器的策略。
PLoS One. 2025 Mar 26;20(3):e0319208. doi: 10.1371/journal.pone.0319208. eCollection 2025.
8
Critical assessment of protein intrinsic disorder prediction.蛋白质固有无序预测的关键评估。
Nat Methods. 2021 May;18(5):472-481. doi: 10.1038/s41592-021-01117-3. Epub 2021 Apr 19.

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验