Ran Hui, Yang Ye, Han Weijing, Liang Ruijing, Zhu Denghui, Yuan Bing, Xu Cheng, Li Dan, Ren Jian, Pan Hong, Liu Lanlan, Ma Teng, Ma Aiqing, Cai Lintao
Guangdong Key Laboratory of Nanomedicine, CAS-HK Joint Lab of Biomaterials, Shenzhen Institute of Advanced Technology (SIAT), Chinese Academy of Sciences, Shenzhen 518055, PR China; Guangdong Key Laboratory for Research and Development of Natural Drugs, Key Laboratory for Nanomedicine, Guangdong Medical University, Dongguan 523808, PR China.
Institute of Biomedical and Health Engineering, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518055, PR China.
Trends Biotechnol. 2025 Apr;43(4):868-892. doi: 10.1016/j.tibtech.2024.11.018. Epub 2024 Dec 20.
Despite the excellent advantages of biomicrorobots, such as autonomous navigation and targeting actuation, effective penetration and retention to deep lesion sites for effective therapy remains a longstanding challenge. Here, we present dual-engine cell microrobots, which we refer to as PR-robots, created by conjugating photosynthetic bacteria (PSB) with red blood cells (RBCs). The robots penetrate the tumor interior in swarms through combined hypoxic traction and ultrasound actuation (UA). The hypoxia-targeting ability of PSB induced PR-robot accumulation in the tumor region. Subsequently, programmable UA trapped the PR-robots to form bioswarms and traverse tissue obstacles, penetrating the tumor interior. The substantial influx of PR-robots into the tumor tissue promoted the formation of tumor-specific thrombus (TST). Finally, the PSB and TST synergistically improved the effect of photothermal therapy. Thus, these advantages of remote ultrasound control technology pave the way for various new therapies in practical biomedicine.
尽管生物微型机器人具有诸多卓越优势,如自主导航和靶向驱动,但有效穿透并滞留在深部病变部位以实现有效治疗仍是一个长期挑战。在此,我们展示了双引擎细胞微型机器人,我们将其称为PR机器人,它是通过将光合细菌(PSB)与红细胞(RBC)结合而创建的。这些机器人通过缺氧牵引和超声驱动(UA)相结合的方式成群穿透肿瘤内部。PSB的缺氧靶向能力促使PR机器人在肿瘤区域聚集。随后,可编程的UA捕获PR机器人形成生物群并穿越组织障碍,穿透肿瘤内部。大量PR机器人涌入肿瘤组织促进了肿瘤特异性血栓(TST)的形成。最后,PSB和TST协同提高了光热治疗效果。因此,远程超声控制技术的这些优势为实际生物医学中的各种新疗法铺平了道路。