Suppr超能文献

微小RNA组、机器学习和生物信息学的协同整合用于识别阻塞性睡眠呼吸暂停潜在疾病修饰因子

Synergic Integration of the miRNome, Machine Learning and Bioinformatics for the Identification of Potential Disease-Modifying Agents in Obstructive Sleep Apnea.

作者信息

Belmonte Thalia, Benitez Iván D, García-Hidalgo María C, Molinero Marta, Pinilla Lucía, Mínguez Olga, Vaca Rafaela, Aguilà Maria, Moncusí-Moix Anna, Torres Gerard, Mediano Olga, Masa Juan F, Masdeu Maria J, Montero-San-Martín Blanca, Ibarz Mercè, Martinez-Camblor Pablo, Gómez-Carballa Alberto, Salas Antonio, Martinón-Torres Federico, Barbé Ferran, Sánchez-de-la-Torre Manuel, de Gonzalo-Calvo David

机构信息

Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, Lleida, Spain; CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain.

Translational Research in Respiratory Medicine, University Hospital Arnau de Vilanova and Santa Maria, IRBLleida, Lleida, Spain; CIBER of Respiratory Diseases (CIBERES), Institute of Health Carlos III, Madrid, Spain; Department of Basic Medical Sciences, University of Lleida, Lleida, Spain.

出版信息

Arch Bronconeumol. 2025 Jun;61(6):348-358. doi: 10.1016/j.arbres.2024.11.011. Epub 2024 Dec 5.

Abstract

INTRODUCTION

Understanding the diverse pathogenetic pathways in obstructive sleep apnea (OSA) is crucial for improving outcomes. microRNA (miRNA) profiling is a promising strategy for elucidating these mechanisms.

OBJECTIVE

To characterize the pathogenetic pathways linked to OSA through the integration of miRNA profiles, machine learning (ML) and bioinformatics.

METHODS

This multicenter study involved 525 patients with suspected OSA who underwent polysomnography. Plasma miRNAs were quantified via RNA sequencing in the discovery phase, with validation in two subsequent phases using RT-qPCR. Supervised ML feature selection methods and comprehensive bioinformatic analyses were employed. The associations among miRNA targets, OSA and OSA treatment were further explored using publicly available external datasets.

RESULTS

Following the discovery and technical validation phases in a subset of patients with and without confirmed OSA (n=53), eleven miRNAs were identified as candidates for the subsequent feature selection process. These miRNAs were then quantified in the remaining population (n=472). Feature selection methods revealed that the miRNAs let-7d-5p, miR-15a-5p and miR-107 were the most informative of OSA. The predominant mechanisms linked to these miRNAs were closely related to cellular events such as cell death, cell differentiation, extracellular remodeling, autophagy and metabolism. One target of let-7d-5p and miR-15a-5p, the TFDP2 gene, exhibited significant differences in gene expression between subjects with and without OSA across three independent databases.

CONCLUSION

Our study identified three plasma miRNAs that, in conjunction with their target genes, provide new insights into OSA pathogenesis and reveal novel regulators and potential drug targets.

摘要

引言

了解阻塞性睡眠呼吸暂停(OSA)中多种致病途径对于改善治疗效果至关重要。微小RNA(miRNA)分析是阐明这些机制的一种有前景的策略。

目的

通过整合miRNA谱、机器学习(ML)和生物信息学来表征与OSA相关的致病途径。

方法

这项多中心研究纳入了525例疑似OSA患者,这些患者均接受了多导睡眠监测。在发现阶段通过RNA测序对血浆miRNA进行定量,并在随后的两个阶段使用RT-qPCR进行验证。采用了监督式ML特征选择方法和全面的生物信息学分析。使用公开可用的外部数据集进一步探索miRNA靶标、OSA和OSA治疗之间的关联。

结果

在一组确诊和未确诊OSA的患者(n = 53)中完成发现和技术验证阶段后,11种miRNA被确定为后续特征选择过程的候选者。然后在其余人群(n = 472)中对这些miRNA进行定量。特征选择方法显示,miRNA let-7d-5p、miR-15a-5p和miR-107对OSA的信息量最大。与这些miRNA相关的主要机制与细胞死亡、细胞分化、细胞外重塑、自噬和代谢等细胞事件密切相关。let-7d-5p和miR-15a-5p的一个靶标TFDP2基因在三个独立数据库中OSA患者和非OSA患者之间的基因表达存在显著差异。

结论

我们的研究鉴定出三种血浆miRNA,它们与其靶基因一起为OSA发病机制提供了新见解,并揭示了新的调节因子和潜在的药物靶点。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验