Garrido-Palazuelos Lennin Isaac, Aguirre-Sánchez José Roberto, Sandoval-González Maria Fernanda, Mukhtar Mamuna, Guerra-Meza Omar, Ahmed-Khan Haris
Unidad Regional Los Mochis, Departamento Académico de Ciencias de La Salud, Universidad Autónoma de Occidente, Blvd. Macario Gaxiola y Carretera Internacional, México 15, C.P. 81223, Los Mochis, Sinaloa, Mexico.
Laboratorio Nacional Para La Investigación en Inocuidad Alimentaria (LANIIA), Centro de Investigación en Alimentación y Desarrollo (CIAD), Culiacán, Sinaloa, Mexico.
Mol Biotechnol. 2024 Dec 21. doi: 10.1007/s12033-024-01329-w.
In Salmonella Typhimurium, efflux pump proteins, such as AcrD actively expel drugs and hazardous chemicals from bacterial cells, resulting in treatment failure and the emergence of antibiotic-resistant variants. Focusing on AcrD may lead to the development of novel antimicrobials against multidrug-resistant bacteria. However, challenges persist in achieving high selectivity, low toxicity, and effective bacterial penetration. Natural products, particularly microbial secondary metabolites, possess distinct chemical structures that may target the efflux pump systems. The efflux pump inhibitor capabilities of Fusarium nygamai compounds in Salmonella have not been previously investigated. This study employed molecular docking and molecular dynamics simulations to evaluate 25 F. nygamai compounds as potential inhibitors of AcrD. Additionally, the pharmacological characteristics of these substances were examined. Molecular docking results revealed that 3,6-Dimethoxy-2,5-dinitrobenzonitrile, methyl (2-oxo-3-phenylquinoxalin-1(2H)-yl)acetate, and 7-Methyl-5-nitro-1,4-dihydro-quinoxaline-2,3-dione exhibited the highest binding energies with AcrD. Furthermore, molecular dynamics simulations indicated stable ligand-receptor complex variations over time. This study contributes to the efforts against antibiotic resistance and the improvement of Salmonella infection treatment outcomes globally by facilitating the development of novel therapeutic approaches and enhancing antibiotic efficacy.
在鼠伤寒沙门氏菌中,外排泵蛋白,如AcrD,会主动将药物和有害化学物质排出细菌细胞,导致治疗失败以及抗生素耐药变体的出现。聚焦于AcrD可能会促使开发针对多重耐药细菌的新型抗菌药物。然而,在实现高选择性、低毒性和有效的细菌穿透方面仍然存在挑战。天然产物,特别是微生物次级代谢产物,具有独特的化学结构,可能靶向于外排泵系统。此前尚未研究过镰孢菌化合物对沙门氏菌外排泵的抑制能力。本研究采用分子对接和分子动力学模拟来评估25种镰孢菌化合物作为AcrD潜在抑制剂的效果。此外,还检测了这些物质的药理学特性。分子对接结果显示,3,6-二甲氧基-2,5-二硝基苯甲腈、(2-氧代-3-苯基喹喔啉-1(2H)-基)乙酸甲酯和7-甲基-5-硝基-1,4-二氢喹喔啉-2,3-二酮与AcrD的结合能最高。此外,分子动力学模拟表明配体-受体复合物随时间呈现稳定变化。本研究通过推动新型治疗方法的开发和提高抗生素疗效,为全球对抗抗生素耐药性以及改善沙门氏菌感染治疗结果做出了贡献。