Suppr超能文献

MotAB 在细菌鞭毛马达中旋转机制的理论见解。

Theoretical insights into rotary mechanism of MotAB in the bacterial flagellar motor.

机构信息

Department of Cell Biology, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan.

Department of Cell Biology, Graduate School of Medicine, the University of Tokyo, Tokyo, Japan; Department of Physics, Graduate School of Science, the University of Tokyo, Tokyo, Japan; Universal Biology Institute and International Research Center for Neurointelligence, the University of Tokyo, Tokyo, Japan; Laboratory for Cell Polarity Regulation, Center for Biosystems Dynamics Research (BDR), RIKEN, Osaka, Japan.

出版信息

Biophys J. 2024 Oct 15;123(20):3587-3599. doi: 10.1016/j.bpj.2024.09.010. Epub 2024 Sep 11.

Abstract

Many bacteria enable locomotion by rotating their flagellum. It has been suggested that this rotation is realized by the rotary motion of the stator unit, MotAB, which is driven by proton transfer across the membrane. Recent cryo-electron microscopy studies have revealed a 5:2 MotAB configuration, in which a MotB dimer is encircled by a ring-shaped MotA pentamer. Although the structure implicates the rotary motion of the MotA wheel around the MotB axle, the molecular mechanisms of rotary motion and how they are coupled with proton transfer across the membrane remain elusive. In this study, we built a structure-based computational model for Campylobacter jejuni MotAB, conducted comprehensive protonation-state-dependent molecular dynamics simulations, and revealed a plausible proton-transfer-coupled rotation pathway. The model assumes rotation-dependent proton transfer, in which proton uptake from the periplasmic side to the conserved aspartic acid in MotB is followed by proton hopping to the MotA proton-carrying site, followed by proton export to the CP. We suggest that, by maintaining two of the proton-carrying sites of MotA in the deprotonated state, the MotA pentamer robustly rotates by ∼36° per proton transfer across the membrane. Our results provide a structure-based mechanistic model of the rotary motion of MotAB in bacterial flagellar motors and provide insights into various ion-driven rotary molecular motors.

摘要

许多细菌通过旋转鞭毛来实现运动。有人提出,这种旋转是通过定子单元 MotAB 的旋转运动来实现的,MotAB 由质子穿过膜的转移驱动。最近的低温电子显微镜研究揭示了一种 5:2 的 MotAB 结构,其中一个 MotB 二聚体被一个环形的 MotA 五聚体包围。虽然该结构暗示了 MotA 轮围绕 MotB 轴的旋转运动,但旋转运动的分子机制以及它们与质子穿过膜的转移如何偶联仍然难以捉摸。在这项研究中,我们为弯曲杆菌 MotAB 构建了一个基于结构的计算模型,进行了全面的质子化状态依赖的分子动力学模拟,并揭示了一种合理的质子转移偶联旋转途径。该模型假设旋转依赖的质子转移,其中从周质侧到 MotB 中的保守天冬氨酸摄取质子,然后质子跳跃到 MotA 的质子携带位点,然后质子被运送到 CP。我们认为,通过保持 MotA 中两个质子携带位点处于去质子化状态,MotA 五聚体可以通过每轮质子穿过膜的转移稳定地旋转约 36°。我们的结果为细菌鞭毛马达中 MotAB 的旋转运动提供了一个基于结构的机制模型,并为各种离子驱动的旋转分子马达提供了深入的了解。

相似文献

1
Theoretical insights into rotary mechanism of MotAB in the bacterial flagellar motor.
Biophys J. 2024 Oct 15;123(20):3587-3599. doi: 10.1016/j.bpj.2024.09.010. Epub 2024 Sep 11.
2
In situ structure of a bacterial flagellar motor at subnanometre resolution reveals adaptations for increased torque.
Nat Microbiol. 2025 Jul;10(7):1723-1740. doi: 10.1038/s41564-025-02012-9. Epub 2025 Jul 1.
3
Tetrameric PilZ protein stabilizes stator ring in complex flagellar motor and is required for motility in .
Proc Natl Acad Sci U S A. 2025 Jan 7;122(1):e2412594121. doi: 10.1073/pnas.2412594121. Epub 2024 Dec 30.
4
Effect of the MotA(M206I) Mutation on Torque Generation and Stator Assembly in the H-Driven Flagellar Motor.
J Bacteriol. 2019 Feb 25;201(6). doi: 10.1128/JB.00727-18. Print 2019 Mar 15.
5
Organic Synthesis Away from Equilibrium: Contrathermodynamic Transformations Enabled by Excited-State Electron Transfer.
Acc Chem Res. 2024 Jul 2;57(13):1827-1838. doi: 10.1021/acs.accounts.4c00227. Epub 2024 Jun 21.
6
A Chaperone for the Stator Units of a Bacterial Flagellum.
mBio. 2019 Aug 6;10(4):e01732-19. doi: 10.1128/mBio.01732-19.
8
Health professionals' experience of teamwork education in acute hospital settings: a systematic review of qualitative literature.
JBI Database System Rev Implement Rep. 2016 Apr;14(4):96-137. doi: 10.11124/JBISRIR-2016-1843.
9
Structural insight into sodium ion pathway in the bacterial flagellar stator from marine .
Proc Natl Acad Sci U S A. 2025 Jan 7;122(1):e2415713122. doi: 10.1073/pnas.2415713122. Epub 2024 Dec 30.
10

本文引用的文献

1
Tuning the stator subunit of the flagellar motor with coiled-coil engineering.
Protein Sci. 2023 Dec;32(12):e4811. doi: 10.1002/pro.4811.
2
Ion selectivity and rotor coupling of the Vibrio flagellar sodium-driven stator unit.
Nat Commun. 2023 Jul 27;14(1):4411. doi: 10.1038/s41467-023-39899-z.
4
F-F coupling and symmetry mismatch in ATP synthase resolved in every F rotation step.
Biophys J. 2023 Jul 25;122(14):2898-2909. doi: 10.1016/j.bpj.2022.09.034. Epub 2022 Sep 28.
5
A new class of biological ion-driven rotary molecular motors with 5:2 symmetry.
Front Microbiol. 2022 Aug 5;13:948383. doi: 10.3389/fmicb.2022.948383. eCollection 2022.
6
Determinants of Directionality and Efficiency of the ATP Synthase F Motor at Atomic Resolution.
J Phys Chem Lett. 2022 Jan 13;13(1):387-392. doi: 10.1021/acs.jpclett.1c03358. Epub 2022 Jan 5.
7
Remodeling and activation mechanisms of outer arm dyneins revealed by cryo-EM.
EMBO Rep. 2021 Sep 6;22(9):e52911. doi: 10.15252/embr.202152911. Epub 2021 Aug 2.
8
Shulin packages axonemal outer dynein arms for ciliary targeting.
Science. 2021 Feb 26;371(6532):910-916. doi: 10.1126/science.abe0526.
9
Structure of a microtubule-bound axonemal dynein.
Nat Commun. 2021 Jan 20;12(1):477. doi: 10.1038/s41467-020-20735-7.
10
Cryo-EM and MD infer water-mediated proton transport and autoinhibition mechanisms of V complex.
Sci Adv. 2020 Oct 7;6(41). doi: 10.1126/sciadv.abb9605. Print 2020 Oct.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验