Carrasco-Mantis Ana, Reina-Romo Esther, Sanz-Herrera José A
Escuela Técnica Superior de Ingeniería, Universidad de Sevilla, Spain.
Escuela Técnica Superior de Ingeniería, Universidad de Sevilla, Spain.
Comput Biol Med. 2025 Feb;185:109559. doi: 10.1016/j.compbiomed.2024.109559. Epub 2024 Dec 21.
Organoids are 3D in vitro models that fulfill a hierarchical function, representing a small version of living tissues and, therefore, a good approximation of cellular mechanisms. However, one of the main disadvantages of these models is the appearance of a necrotic core due to poor vascularization. The aim of this work is the development of a numerical framework that incorporates the mechanical stimulation as a key factor in organoid vascularization. Parameters, such as fluid velocity and nutrient consumption, are analyzed along the organoid evolution.
The mathematical model created for this purpose combines continuum and discrete approaches. In the continuum part, the fluid flow and the diffusion of oxygen and nutrients are modeled using a finite element method approach. Meanwhile, the growth of the organoid, blood vessel evolution, as well as their interaction with the surrounding environment, are modeled using agent-based methods.
Continuum model outcomes include the distribution of shear stress, pressure and fluid velocity around the organoid surface, in addition to the concentration of oxygen and nutrients in its interior. The agent models account for cell proliferation, differentiation, organoid growth and blood vessel morphology, for the different case studies considered.
Two main conclusions are achieved in this work: (i) the results of the study quantitatively predict in vitro data, with an enhanced blood vessel invasion under high fluid flow and (ii) the diffusion and consumption model parameters of the organoid cells determine the thickness of the proliferative, quiescent, hypoxic and necrotic layers.
类器官是一种三维体外模型,具有分层功能,代表活体组织的缩小版,因此能很好地模拟细胞机制。然而,这些模型的一个主要缺点是由于血管化不良而出现坏死核心。这项工作的目的是开发一个数值框架,将机械刺激作为类器官血管化的关键因素纳入其中。沿着类器官的演化过程分析诸如流体速度和营养物质消耗等参数。
为此创建的数学模型结合了连续介质和离散方法。在连续介质部分,使用有限元方法对流体流动以及氧气和营养物质的扩散进行建模。同时,使用基于代理的方法对类器官的生长、血管演化及其与周围环境的相互作用进行建模。
连续介质模型的结果包括类器官表面周围的剪应力、压力和流体速度分布,以及其内部氧气和营养物质的浓度。对于所考虑的不同案例研究,代理模型考虑了细胞增殖、分化、类器官生长和血管形态。
这项工作得出两个主要结论:(i)研究结果定量预测了体外数据,在高流体流动下血管侵袭增强;(ii)类器官细胞的扩散和消耗模型参数决定了增殖层、静止层、缺氧层和坏死层的厚度。