Suppr超能文献

用有限元法实现的顶点类器官模型解析生物学与物理学之间的相互作用:一种用于分析球形类器官壳上细胞行为的力学工具。

Deciphering the interplay between biology and physics with a finite element method-implemented vertex organoid model: A tool for the mechanical analysis of cell behavior on a spherical organoid shell.

作者信息

Laussu Julien, Michel Deborah, Magne Léa, Segonds Stephane, Marguet Steven, Hamel Dimitri, Quaranta-Nicaise Muriel, Barreau Frederick, Mas Emmanuel, Velay Vincent, Bugarin Florian, Ferrand Audrey

机构信息

Institut Clément Ader, Université Fédérale de Toulouse Midi-Pyrénées, Institut Clément Ader-CNRS UMR 5312 -UPS/INSA/Mines Albi/ISAE, Toulouse, France.

IRSD-Institut de Recherche en Santé Digestive, Université de Toulouse, INSERM, INRAE, ENVT, UPS, Toulouse, France.

出版信息

PLoS Comput Biol. 2025 Jan 10;21(1):e1012681. doi: 10.1371/journal.pcbi.1012681. eCollection 2025 Jan.

Abstract

Understanding the interplay between biology and mechanics in tissue architecture is challenging, particularly in terms of 3D tissue organization. Addressing this challenge requires a biological model enabling observations at multiple levels from cell to tissue, as well as theoretical and computational approaches enabling the generation of a synthetic model that is relevant to the biological model and allowing for investigation of the mechanical stresses experienced by the tissue. Using a monolayer human colon epithelium organoid as a biological model, freely available tools (Fiji, Cellpose, Napari, Morphonet, or Tyssue library), and the commercially available Abaqus FEM solver, we combined vertex and FEM approaches to generate a comprehensive viscoelastic finite element model of the human colon organoid and demonstrated its flexibility. We imaged human colon organoid development for 120 hours, following the evolution of the organoids from an immature to a mature morphology. According to the extracted architectural/geometric parameters of human colon organoids at various stages of tissue architecture establishment, we generated organoid active vertex models. However, this approach did not consider the mechanical aspects involved in the organoids' morphological evolution. Therefore, we applied a finite element method considering mechanical loads mimicking osmotic pressure, external solicitation, or active contraction in the vertex model by using the Abaqus FEM solver. Integration of finite element analysis (FEA) into the vertex model achieved a better fit with the biological model. Therefore, the FEM model provides a basis for depicting cell shape, tissue deformation, and cellular-level strain due to imposed stresses. In conclusion, we demonstrated that a combination of vertex and FEM approaches, combining geometrical and mechanical parameters, improves modeling of alterations in organoid morphology over time and enables better assessment of the mechanical cues involved in establishing the architecture of the human colon epithelium.

摘要

理解组织结构中生物学与力学之间的相互作用具有挑战性,尤其是在三维组织组织方面。应对这一挑战需要一个能够实现从细胞到组织多个层面观察的生物学模型,以及理论和计算方法,以生成与生物学模型相关的合成模型,并能够研究组织所经历的机械应力。我们以单层人类结肠上皮类器官作为生物学模型,使用免费可用的工具(Fiji、Cellpose、Napari、Morphonet或Tyssue库)以及商业可用的Abaqus有限元求解器,将顶点法和有限元法相结合,生成了人类结肠类器官的综合粘弹性有限元模型,并展示了其灵活性。我们对人类结肠类器官发育进行了120小时的成像,跟踪类器官从不成熟到成熟形态的演变。根据在组织结构建立的各个阶段提取的人类结肠类器官的结构/几何参数,我们生成了类器官活性顶点模型。然而,这种方法没有考虑类器官形态演变中涉及的力学方面。因此,我们应用有限元法,通过使用Abaqus有限元求解器在顶点模型中考虑模拟渗透压、外部拉力或主动收缩的机械载荷。将有限元分析(FEA)集成到顶点模型中,使其与生物学模型的拟合度更好。因此,有限元模型为描绘细胞形状、组织变形以及由于施加应力而产生的细胞水平应变提供了基础。总之,我们证明了顶点法和有限元法相结合,结合几何和力学参数,改善了类器官形态随时间变化的建模,并能够更好地评估参与建立人类结肠上皮组织结构的力学线索。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/dc60/11771887/ba11667d2dd1/pcbi.1012681.g001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验