Suppr超能文献

HDAC3与助手:基于化学信息学的组蛋白去乙酰化酶3抑制剂发现

HDAC3_VS_assistant: cheminformatics-driven discovery of histone deacetylase 3 inhibitors.

作者信息

Tinkov Oleg V, Grigorev Veniamin Y

机构信息

Department of Pharmacology and Pharmaceutical Chemistry, Medical Faculty T.G. Shevchenko, Transdniestria State University, Tiraspol, 3300, Moldova.

Institute of Physiologically Active Compounds Federal Research Center of Problems of Chemical Physics and Medicinal Chemistry, Russian Academy of Sciences, Chernogolovka, 142432, Russia.

出版信息

Mol Divers. 2024 Dec 23. doi: 10.1007/s11030-024-11066-6.

Abstract

Histone deacetylase 3 (HDAC3) inhibitors keep significant therapeutic promise for treating oncological, neurodegenerative, and inflammatory diseases. In this work, we developed robust QSAR regression models for HDAC3 inhibitory activity and acute toxicity (LD, intravenous administration in mice). A total of 1751 compounds were curated for HDAC3 activity, and 15,068 for toxicity. The models employed molecular descriptors such as Morgan fingerprints, MACCS-166 keys, and Klekota-Roth, PubChem fingerprints integrated with machine learning algorithms including random forest, gradient boosting regressor, and support vector machine. The HDAC3 QSAR models achieved Q values of up to 0.76 and RMSE values as low as 0.58, while toxicity models attained Q values of 0.63 and RMSE values down to 0.41, with applicability domain (AD) coverage exceeding 68%. Internal validation by fivefold cross-validation (Qcv = 0.70 for HDAC3 and 0.60 for toxicity) and y-randomization confirmed model reliability. Shapley additive explanation (SHAP) was also used to explain the influence of modeling features on model prediction results. The most predictive QSAR models are integrated into the developed HDAC3_VS_assistant application, which is freely available at https://hdac3-vs-assistant-v2.streamlit.app/ . Virtual screening conducted using the HDAC3_VS_assistant web application allowed us to reveal a number of potential inhibitors, and the nature of their bonds with the active HDAC3 site was additionally investigated by molecular docking.

摘要

组蛋白去乙酰化酶3(HDAC3)抑制剂在治疗肿瘤、神经退行性疾病和炎症性疾病方面具有显著的治疗前景。在这项工作中,我们针对HDAC3抑制活性和急性毒性(小鼠静脉注射的半数致死量)建立了强大的定量构效关系(QSAR)回归模型。总共收集了1751种化合物用于HDAC3活性研究,15068种用于毒性研究。这些模型采用了分子描述符,如摩根指纹、MACCS-166键和克莱科塔-罗斯指纹,以及与包括随机森林、梯度提升回归器和支持向量机在内的机器学习算法相结合的PubChem指纹。HDAC3的QSAR模型的Q值高达0.76,均方根误差(RMSE)值低至0.58,而毒性模型的Q值为0.63,RMSE值低至0.41,适用域(AD)覆盖率超过68%。通过五重交叉验证(HDAC3的Qcv = 0.70,毒性的Qcv = 0.60)和y随机化进行的内部验证证实了模型的可靠性。还使用了夏普利加法解释(SHAP)来解释建模特征对模型预测结果的影响。最具预测性的QSAR模型被集成到开发的HDAC3_VS_assistant应用程序中,该应用程序可在https://hdac3-vs-assistant-v2.streamlit.app/免费获取。使用HDAC3_VS_assistant网络应用程序进行的虚拟筛选使我们能够发现一些潜在的抑制剂,并通过分子对接进一步研究它们与活性HDAC3位点的结合性质。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验