Huang Qizheng, Qian Zhengyi, Ye Na, Tan Yingjun, Li Menggang, Luo Mingchuan, Guo Shaojun
School of Materials Science and Engineering, Peking University, Beijing, 100871, P. R. China.
Laoshan Laboratory, Qingdao, Shandong, 266237, P. R. China.
Adv Mater. 2025 Feb;37(7):e2415639. doi: 10.1002/adma.202415639. Epub 2024 Dec 23.
Renewable electricity-driven CO electroreduction provides a promising route toward carbon neutrality and sustainable chemical production. Nevertheless, the viability of this route faces constraints of catalytic efficiency and durability in near-neutral electrolytes at industrial-scale current densities, mechanistically originating from unfavorable accommodation of H species from water dissociation. Herein, a new strategy is reported to accelerate water dissociation by the rich surface hydroxyl on bismuth subcarbonate nanosheets in situ electrochemical transformed from bismuth hydroxide nanotube precursors. This catalyst enables the electrosynthesis of formate at current densities up to 1000 mA cm with >96% faradaic efficiencies in flow cells, and a 200 h durable membrane electrode assembly in a dilute near-neutral environment. Combined kinetic studies, in situ characterizations, and theoretical calculations reveal that the atomic thickness strengthens the hydroxyl adsorption, and with a highly localized electron configuration, the hydroxyl-functionalized surface is more affinitive to oxygenated species, thus lowering the barrier for water dissociation and the crucial hydrogenation step in the proton-coupled electron transfer from OCHO to HCOOH.
可再生电力驱动的CO电还原为实现碳中和和可持续化学品生产提供了一条有前景的途径。然而,在工业规模电流密度下,这条途径的可行性在近中性电解质中面临催化效率和耐久性的限制,其机理源于水离解产生的H物种的不利吸附。在此,报道了一种新策略,通过由氢氧化铋纳米管前驱体原位电化学转化得到的碱式碳酸铋纳米片上丰富的表面羟基来加速水离解。这种催化剂能够在流动池中以高达1000 mA cm的电流密度电合成甲酸盐,法拉第效率>96%,并且在稀近中性环境中可实现200 h耐用的膜电极组件。结合动力学研究、原位表征和理论计算表明,原子厚度增强了羟基吸附,并且具有高度局域化的电子构型,羟基功能化表面对含氧物种更具亲和力,从而降低了水离解的势垒以及质子耦合电子从OCHO转移到HCOOH过程中关键的氢化步骤的势垒。