Fan Weiru, Qian Gewei, Wang Yutong, Xu Chen-Ran, Chen Ziyang, Liu Xun, Li Wei, Liu Xu, Liu Feng, Xu Xingqi, Wang Da-Wei, Yakovlev Vladislav V
Zhejiang Province Key Laboratory of Quantum Technology and Device, School of Physics, and State Key Laboratory for Extreme Photonics and Instrumentation, Zhejiang University, Hangzhou, 310027 Zhejiang Province China.
College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou, 310027 Zhejiang Province China.
Photonix. 2024;5(1):40. doi: 10.1186/s43074-024-00155-2. Epub 2024 Dec 18.
Holography is an essential technique of generating three-dimensional images. Recently, quantum holography with undetected photons (QHUP) has emerged as a groundbreaking method capable of capturing complex amplitude images. Despite its potential, the practical application of QHUP has been limited by susceptibility to phase disturbances, low interference visibility, and limited spatial resolution. Deep learning, recognized for its ability in processing complex data, holds significant promise in addressing these challenges. In this report, we present an ample advancement in QHUP achieved by harnessing the power of deep learning to extract images from single-shot holograms, resulting in vastly reduced noise and distortion, alongside a notable enhancement in spatial resolution. The proposed and demonstrated deep learning QHUP (DL-QHUP) methodology offers a transformative solution by delivering high-speed imaging, improved spatial resolution, and superior noise resilience, making it suitable for diverse applications across an array of research fields stretching from biomedical imaging to remote sensing. DL-QHUP signifies a crucial leap forward in the realm of holography, demonstrating its immense potential to revolutionize imaging capabilities and pave the way for advancements in various scientific disciplines. The integration of DL-QHUP promises to unlock new possibilities in imaging applications, transcending existing limitations and offering unparalleled performance in challenging environments.
The online version contains supplementary material available at 10.1186/s43074-024-00155-2.
全息术是生成三维图像的一项重要技术。近来,具有未被探测光子的量子全息术(QHUP)已成为一种开创性方法,能够捕获复振幅图像。尽管其具有潜力,但QHUP的实际应用一直受到相位干扰敏感性、低干涉可见度和有限空间分辨率的限制。深度学习以其处理复杂数据的能力而闻名,在应对这些挑战方面具有巨大潜力。在本报告中,我们展示了通过利用深度学习的力量从单次全息图中提取图像,在QHUP方面取得的显著进展,从而大幅降低了噪声和失真,同时空间分辨率也有显著提高。所提出并展示的深度学习QHUP(DL-QHUP)方法提供了一种变革性解决方案,实现了高速成像、提高了空间分辨率并具有卓越的抗噪声能力,使其适用于从生物医学成像到遥感等一系列研究领域的各种应用。DL-QHUP标志着全息术领域的关键飞跃,展示了其在革新成像能力以及为各科学学科的进步铺平道路方面的巨大潜力。DL-QHUP的集成有望在成像应用中解锁新的可能性,超越现有局限并在具有挑战性的环境中提供无与伦比的性能。
在线版本包含可在10.1186/s43074-024-00155-2获取的补充材料。