Suppr超能文献

应用于神经群体动力学非线性模型的振荡与同步最优控制框架。

A framework for optimal control of oscillations and synchrony applied to non-linear models of neural population dynamics.

作者信息

Salfenmoser Lena, Obermayer Klaus

机构信息

Institute of Software Engineering and Theoretical Computer Science, Technische Universitaet Berlin, Berlin, Germany.

Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany.

出版信息

Front Comput Neurosci. 2024 Dec 6;18:1483100. doi: 10.3389/fncom.2024.1483100. eCollection 2024.

Abstract

We adapt non-linear optimal control theory (OCT) to control oscillations and network synchrony and apply it to models of neural population dynamics. OCT is a mathematical framework to compute an efficient stimulation for dynamical systems. In its standard formulation, it requires a well-defined reference trajectory as target state. This requirement, however, may be overly restrictive for oscillatory targets, where the exact trajectory shape might not be relevant. To overcome this limitation, we introduce three alternative cost functionals to target oscillations and synchrony without specification of a reference trajectory. We successfully apply these cost functionals to single-node and network models of neural populations, in which each node is described by either the Wilson-Cowan model or a biophysically realistic high-dimensional mean-field model of exponential integrate-and-fire neurons. We compute efficient control strategies for four different control tasks. First, we drive oscillations from a stable stationary state at a particular frequency. Second, we switch between stationary and oscillatory stable states and find a translational invariance of the state-switching control signals. Third, we switch between in-phase and out-of-phase oscillations in a two-node network, where all cost functionals lead to identical OC signals in the minimum-energy limit. Finally, we (de-) synchronize an (a-) synchronously oscillating six-node network. In this setup, for the desynchronization task, we find very different control strategies for the three cost functionals. The suggested methods represent a toolbox that enables to include oscillatory phenomena into the framework of non-linear OCT without specification of an exact reference trajectory. However, task-specific adjustments of the optimization parameters have to be performed to obtain informative results.

摘要

我们采用非线性最优控制理论(OCT)来控制振荡和网络同步,并将其应用于神经群体动力学模型。OCT是一个用于为动态系统计算有效刺激的数学框架。在其标准形式中,它需要一个定义明确的参考轨迹作为目标状态。然而,对于振荡目标来说,这一要求可能过于严格,因为精确的轨迹形状可能并不重要。为了克服这一限制,我们引入了三种替代成本泛函,以在不指定参考轨迹的情况下针对振荡和同步。我们成功地将这些成本泛函应用于神经群体的单节点和网络模型,其中每个节点由威尔逊 - 考恩模型或指数积分发放神经元的生物物理现实高维平均场模型描述。我们针对四种不同的控制任务计算了有效的控制策略。首先,我们从特定频率的稳定静止状态驱动振荡。其次,我们在静止和振荡稳定状态之间切换,并发现状态切换控制信号的平移不变性。第三,我们在双节点网络中同相和异相振荡之间切换,在最小能量极限下所有成本泛函都导致相同的最优控制信号。最后,我们使一个(非)同步振荡的六节点网络(去)同步。在这种设置下,对于去同步任务,我们发现三种成本泛函的控制策略非常不同。所提出的方法代表了一个工具箱,能够在不指定精确参考轨迹的情况下将振荡现象纳入非线性OCT框架。然而,必须对优化参数进行特定任务的调整以获得有用的结果。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/47b9/11658993/32cc06d20564/fncom-18-1483100-g0001.jpg

相似文献

1
A framework for optimal control of oscillations and synchrony applied to non-linear models of neural population dynamics.
Front Comput Neurosci. 2024 Dec 6;18:1483100. doi: 10.3389/fncom.2024.1483100. eCollection 2024.
2
Optimal control of a Wilson-Cowan model of neural population dynamics.
Chaos. 2023 Apr 1;33(4). doi: 10.1063/5.0144682.
3
The number of synaptic inputs and the synchrony of large, sparse neuronal networks.
Neural Comput. 2000 May;12(5):1095-139. doi: 10.1162/089976600300015529.
5
The role of network structure and time delay in a metapopulation Wilson--Cowan model.
J Theor Biol. 2019 Sep 21;477:1-13. doi: 10.1016/j.jtbi.2019.05.010. Epub 2019 Jun 7.
6
Establishing a Statistical Link between Network Oscillations and Neural Synchrony.
PLoS Comput Biol. 2015 Oct 14;11(10):e1004549. doi: 10.1371/journal.pcbi.1004549. eCollection 2015 Oct.
7
Nonlinear optimal control of a mean-field model of neural population dynamics.
Front Comput Neurosci. 2022 Aug 3;16:931121. doi: 10.3389/fncom.2022.931121. eCollection 2022.
8
Biophysically grounded mean-field models of neural populations under electrical stimulation.
PLoS Comput Biol. 2020 Apr 23;16(4):e1007822. doi: 10.1371/journal.pcbi.1007822. eCollection 2020 Apr.
9
Contributions of intrinsic membrane dynamics to fast network oscillations with irregular neuronal discharges.
J Neurophysiol. 2005 Dec;94(6):4344-61. doi: 10.1152/jn.00510.2004. Epub 2005 Aug 10.
10
Network mechanisms underlying the role of oscillations in cognitive tasks.
PLoS Comput Biol. 2018 Sep 6;14(9):e1006430. doi: 10.1371/journal.pcbi.1006430. eCollection 2018 Sep.

本文引用的文献

2
Engineering spatiotemporal patterns: information encoding, processing, and controllability in oscillator ensembles.
Biomed Phys Eng Express. 2023 Jul 3;9(4):045033. doi: 10.1088/2057-1976/ace0c9.
3
Landscape and future directions of machine learning applications in closed-loop brain stimulation.
NPJ Digit Med. 2023 Apr 27;6(1):79. doi: 10.1038/s41746-023-00779-x.
4
Optimal control of a Wilson-Cowan model of neural population dynamics.
Chaos. 2023 Apr 1;33(4). doi: 10.1063/5.0144682.
5
Controllability of Structural Brain Networks and the Waxing and Waning of Negative Affect in Daily Life.
Biol Psychiatry Glob Open Sci. 2021 Nov 20;2(4):432-439. doi: 10.1016/j.bpsgos.2021.11.008. eCollection 2022 Oct.
6
Nonlinear optimal control of a mean-field model of neural population dynamics.
Front Comput Neurosci. 2022 Aug 3;16:931121. doi: 10.3389/fncom.2022.931121. eCollection 2022.
7
Neuronal energy use and brain evolution.
Curr Biol. 2022 Jun 20;32(12):R650-R655. doi: 10.1016/j.cub.2022.02.005.
8
Applications of optimal nonlinear control to a whole-brain network of FitzHugh-Nagumo oscillators.
Phys Rev E. 2021 Aug;104(2-1):024213. doi: 10.1103/PhysRevE.104.024213.
10
A review of computational modeling and deep brain stimulation: applications to Parkinson's disease.
Appl Math Mech. 2020;41(12):1747-1768. doi: 10.1007/s10483-020-2689-9. Epub 2020 Nov 18.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验