Salfenmoser Lena, Obermayer Klaus
Institute of Software Engineering and Theoretical Computer Science, Technische Universitaet Berlin, Berlin, Germany.
Bernstein Center for Computational Neuroscience Berlin, Berlin, Germany.
Front Comput Neurosci. 2024 Dec 6;18:1483100. doi: 10.3389/fncom.2024.1483100. eCollection 2024.
We adapt non-linear optimal control theory (OCT) to control oscillations and network synchrony and apply it to models of neural population dynamics. OCT is a mathematical framework to compute an efficient stimulation for dynamical systems. In its standard formulation, it requires a well-defined reference trajectory as target state. This requirement, however, may be overly restrictive for oscillatory targets, where the exact trajectory shape might not be relevant. To overcome this limitation, we introduce three alternative cost functionals to target oscillations and synchrony without specification of a reference trajectory. We successfully apply these cost functionals to single-node and network models of neural populations, in which each node is described by either the Wilson-Cowan model or a biophysically realistic high-dimensional mean-field model of exponential integrate-and-fire neurons. We compute efficient control strategies for four different control tasks. First, we drive oscillations from a stable stationary state at a particular frequency. Second, we switch between stationary and oscillatory stable states and find a translational invariance of the state-switching control signals. Third, we switch between in-phase and out-of-phase oscillations in a two-node network, where all cost functionals lead to identical OC signals in the minimum-energy limit. Finally, we (de-) synchronize an (a-) synchronously oscillating six-node network. In this setup, for the desynchronization task, we find very different control strategies for the three cost functionals. The suggested methods represent a toolbox that enables to include oscillatory phenomena into the framework of non-linear OCT without specification of an exact reference trajectory. However, task-specific adjustments of the optimization parameters have to be performed to obtain informative results.
我们采用非线性最优控制理论(OCT)来控制振荡和网络同步,并将其应用于神经群体动力学模型。OCT是一个用于为动态系统计算有效刺激的数学框架。在其标准形式中,它需要一个定义明确的参考轨迹作为目标状态。然而,对于振荡目标来说,这一要求可能过于严格,因为精确的轨迹形状可能并不重要。为了克服这一限制,我们引入了三种替代成本泛函,以在不指定参考轨迹的情况下针对振荡和同步。我们成功地将这些成本泛函应用于神经群体的单节点和网络模型,其中每个节点由威尔逊 - 考恩模型或指数积分发放神经元的生物物理现实高维平均场模型描述。我们针对四种不同的控制任务计算了有效的控制策略。首先,我们从特定频率的稳定静止状态驱动振荡。其次,我们在静止和振荡稳定状态之间切换,并发现状态切换控制信号的平移不变性。第三,我们在双节点网络中同相和异相振荡之间切换,在最小能量极限下所有成本泛函都导致相同的最优控制信号。最后,我们使一个(非)同步振荡的六节点网络(去)同步。在这种设置下,对于去同步任务,我们发现三种成本泛函的控制策略非常不同。所提出的方法代表了一个工具箱,能够在不指定精确参考轨迹的情况下将振荡现象纳入非线性OCT框架。然而,必须对优化参数进行特定任务的调整以获得有用的结果。