文献检索文档翻译深度研究
Suppr Zotero 插件Zotero 插件
邀请有礼套餐&价格历史记录

新学期,新优惠

限时优惠:9月1日-9月22日

30天高级会员仅需29元

1天体验卡首发特惠仅需5.99元

了解详情
不再提醒
插件&应用
Suppr Zotero 插件Zotero 插件浏览器插件Mac 客户端Windows 客户端微信小程序
高级版
套餐订阅购买积分包
AI 工具
文献检索文档翻译深度研究
关于我们
关于 Suppr公司介绍联系我们用户协议隐私条款
关注我们

Suppr 超能文献

核心技术专利:CN118964589B侵权必究
粤ICP备2023148730 号-1Suppr @ 2025

Uncertainty quantification in coupled wildfire-atmosphere simulations at scale.

作者信息

Schwerdtner Paul, Law Frederick, Wang Qing, Gazen Cenk, Chen Yi-Fan, Ihme Matthias, Peherstorfer Benjamin

机构信息

Courant Institute of Mathematical Sciences, New York University, 251 Mercer Street, New York, NY 10012, USA.

Google Research, Mountain View, CA 94043, USA.

出版信息

PNAS Nexus. 2024 Dec 10;3(12):pgae554. doi: 10.1093/pnasnexus/pgae554. eCollection 2024 Dec.


DOI:10.1093/pnasnexus/pgae554
PMID:39712072
原文链接:https://pmc.ncbi.nlm.nih.gov/articles/PMC11660924/
Abstract

Uncertainties in wildfire simulations pose a major challenge for making decisions about fire management, mitigation, and evacuations. However, ensemble calculations to quantify uncertainties are prohibitively expensive with high-fidelity models that are needed to capture today's ever-more intense and severe wildfires. This work shows that surrogate models trained on related data enable scaling multifidelity uncertainty quantification to high-fidelity wildfire simulations of unprecedented scale with billions of degrees of freedom. The key insight is that correlation is all that matters while bias is irrelevant for speeding up uncertainty quantification when surrogate models are combined with high-fidelity models in multifidelity approaches. This allows the surrogate models to be trained on abundantly available or cheaply generated related data samples that can be strongly biased as long as they are correlated to predictions of high-fidelity simulations. Numerical results with scenarios of the Tubbs 2017 wildfire demonstrate that surrogate models trained on related data make multifidelity uncertainty quantification in large-scale wildfire simulations practical by reducing the training time by several orders of magnitude from 3 months to under 3 h and predicting the burned area at least twice as accurately compared with using high-fidelity simulations alone for a fixed computational budget. More generally, the results suggest that leveraging related data can greatly extend the scope of surrogate modeling, potentially benefiting other fields that require uncertainty quantification in computationally expensive high-fidelity simulations.

摘要
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4000/11660924/df23e24a8108/pgae554f6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4000/11660924/5b3a5b00d5c1/pgae554f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4000/11660924/f227390dd7bc/pgae554f2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4000/11660924/3b778b5691ed/pgae554f3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4000/11660924/ee766d21b9da/pgae554f4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4000/11660924/467e4153aa14/pgae554f5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4000/11660924/df23e24a8108/pgae554f6.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4000/11660924/5b3a5b00d5c1/pgae554f1.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4000/11660924/f227390dd7bc/pgae554f2.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4000/11660924/3b778b5691ed/pgae554f3.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4000/11660924/ee766d21b9da/pgae554f4.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4000/11660924/467e4153aa14/pgae554f5.jpg
https://cdn.ncbi.nlm.nih.gov/pmc/blobs/4000/11660924/df23e24a8108/pgae554f6.jpg

相似文献

[1]
Uncertainty quantification in coupled wildfire-atmosphere simulations at scale.

PNAS Nexus. 2024-12-10

[2]
Multilevel and multifidelity uncertainty quantification for cardiovascular hemodynamics.

Comput Methods Appl Mech Eng. 2020-6-15

[3]
Improved multifidelity Monte Carlo estimators based on normalizing flows and dimensionality reduction techniques.

Comput Methods Appl Mech Eng. 2024-9-1

[4]
Dynamic prediction of global monthly burned area with hybrid deep neural networks.

Ecol Appl. 2022-7

[5]
Deciphering the impact of uncertainty on the accuracy of large wildfire spread simulations.

Sci Total Environ. 2016-6-19

[6]
Uncertainty in Health Impact Assessments of Smoke From a Wildfire Event.

Geohealth. 2022-1-1

[7]
Exploring the potential of transfer learning for metamodels of heterogeneous material deformation.

J Mech Behav Biomed Mater. 2021-5

[8]
Towards efficient uncertainty quantification in complex and large-scale biomechanical problems based on a Bayesian multi-fidelity scheme.

Biomech Model Mechanobiol. 2015-6

[9]
Multifidelity Analysis for Predicting Rare Events in Stochastic Computational Models of Complex Biological Systems.

Biomed Eng Comput Biol. 2018-8-3

[10]
Short- and long-term wildfire threat when adapting infrastructure for wildlife conservation in the boreal forest.

Ecol Appl. 2022-9

本文引用的文献

[1]
The imperative of physics-based modeling and inverse theory in computational science.

Nat Comput Sci. 2021-3

[2]
A general framework for quantifying uncertainty at scale.

Commun Eng. 2022

[3]
Machine learning-accelerated computational fluid dynamics.

Proc Natl Acad Sci U S A. 2021-5-25

[4]
Fire behavior and smoke modeling: Model improvement and measurement needs for next-generation smoke research and forecasting systems.

Int J Wildland Fire. 2019

[5]
Machine learning acceleration of simulations of Stokesian suspensions.

Phys Rev E. 2019-6

[6]
Data-driven forecasting of high-dimensional chaotic systems with long short-term memory networks.

Proc Math Phys Eng Sci. 2018-5

[7]
Impact of anthropogenic climate change on wildfire across western US forests.

Proc Natl Acad Sci U S A. 2016-10-18

[8]
Increasing western US forest wildfire activity: sensitivity to changes in the timing of spring.

Philos Trans R Soc Lond B Biol Sci. 2016-6-5

[9]
Discovering governing equations from data by sparse identification of nonlinear dynamical systems.

Proc Natl Acad Sci U S A. 2016-4-12

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

推荐工具

医学文档翻译智能文献检索