Vlachas Pantelis R, Byeon Wonmin, Wan Zhong Y, Sapsis Themistoklis P, Koumoutsakos Petros
Chair of Computational Science, ETH Zurich, Clausiusstrasse 33, Zurich, CH-8092, Switzerland.
Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA.
Proc Math Phys Eng Sci. 2018 May;474(2213):20170844. doi: 10.1098/rspa.2017.0844. Epub 2018 May 23.
We introduce a data-driven forecasting method for high-dimensional chaotic systems using long short-term memory (LSTM) recurrent neural networks. The proposed LSTM neural networks perform inference of high-dimensional dynamical systems in their reduced order space and are shown to be an effective set of nonlinear approximators of their attractor. We demonstrate the forecasting performance of the LSTM and compare it with Gaussian processes (GPs) in time series obtained from the Lorenz 96 system, the Kuramoto-Sivashinsky equation and a prototype climate model. The LSTM networks outperform the GPs in short-term forecasting accuracy in all applications considered. A hybrid architecture, extending the LSTM with a mean stochastic model (MSM-LSTM), is proposed to ensure convergence to the invariant measure. This novel hybrid method is fully data-driven and extends the forecasting capabilities of LSTM networks.
我们介绍一种使用长短期记忆(LSTM)递归神经网络对高维混沌系统进行数据驱动预测的方法。所提出的LSTM神经网络在其降阶空间中对高维动力系统进行推理,并被证明是其吸引子的一组有效的非线性逼近器。我们展示了LSTM的预测性能,并将其与从洛伦兹96系统、Kuramoto-Sivashinsky方程和一个原型气候模型获得的时间序列中的高斯过程(GPs)进行比较。在所考虑的所有应用中,LSTM网络在短期预测准确性方面优于GPs。提出了一种混合架构,用均值随机模型(MSM-LSTM)扩展LSTM,以确保收敛到不变测度。这种新颖的混合方法完全由数据驱动,并扩展了LSTM网络的预测能力。