Suppr超能文献

基于长短期记忆网络的数据驱动高维混沌系统预测

Data-driven forecasting of high-dimensional chaotic systems with long short-term memory networks.

作者信息

Vlachas Pantelis R, Byeon Wonmin, Wan Zhong Y, Sapsis Themistoklis P, Koumoutsakos Petros

机构信息

Chair of Computational Science, ETH Zurich, Clausiusstrasse 33, Zurich, CH-8092, Switzerland.

Department of Mechanical Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA.

出版信息

Proc Math Phys Eng Sci. 2018 May;474(2213):20170844. doi: 10.1098/rspa.2017.0844. Epub 2018 May 23.

Abstract

We introduce a data-driven forecasting method for high-dimensional chaotic systems using long short-term memory (LSTM) recurrent neural networks. The proposed LSTM neural networks perform inference of high-dimensional dynamical systems in their reduced order space and are shown to be an effective set of nonlinear approximators of their attractor. We demonstrate the forecasting performance of the LSTM and compare it with Gaussian processes (GPs) in time series obtained from the Lorenz 96 system, the Kuramoto-Sivashinsky equation and a prototype climate model. The LSTM networks outperform the GPs in short-term forecasting accuracy in all applications considered. A hybrid architecture, extending the LSTM with a mean stochastic model (MSM-LSTM), is proposed to ensure convergence to the invariant measure. This novel hybrid method is fully data-driven and extends the forecasting capabilities of LSTM networks.

摘要

我们介绍一种使用长短期记忆(LSTM)递归神经网络对高维混沌系统进行数据驱动预测的方法。所提出的LSTM神经网络在其降阶空间中对高维动力系统进行推理,并被证明是其吸引子的一组有效的非线性逼近器。我们展示了LSTM的预测性能,并将其与从洛伦兹96系统、Kuramoto-Sivashinsky方程和一个原型气候模型获得的时间序列中的高斯过程(GPs)进行比较。在所考虑的所有应用中,LSTM网络在短期预测准确性方面优于GPs。提出了一种混合架构,用均值随机模型(MSM-LSTM)扩展LSTM,以确保收敛到不变测度。这种新颖的混合方法完全由数据驱动,并扩展了LSTM网络的预测能力。

相似文献

1
Data-driven forecasting of high-dimensional chaotic systems with long short-term memory networks.
Proc Math Phys Eng Sci. 2018 May;474(2213):20170844. doi: 10.1098/rspa.2017.0844. Epub 2018 May 23.
4
Data-driven learning of chaotic dynamical systems using Discrete-Temporal Sobolev Networks.
Neural Netw. 2024 May;173:106152. doi: 10.1016/j.neunet.2024.106152. Epub 2024 Feb 1.
6
A New Hybrid Forecasting Model Based on SW-LSTM and Wavelet Packet Decomposition: A Case Study of Oil Futures Prices.
Comput Intell Neurosci. 2021 Jul 12;2021:7653091. doi: 10.1155/2021/7653091. eCollection 2021.
8
Empirical mode decomposition based long short-term memory neural network forecasting model for the short-term metro passenger flow.
PLoS One. 2019 Sep 11;14(9):e0222365. doi: 10.1371/journal.pone.0222365. eCollection 2019.
10
Entanglement-Structured LSTM Boosts Chaotic Time Series Forecasting.
Entropy (Basel). 2021 Nov 11;23(11):1491. doi: 10.3390/e23111491.

引用本文的文献

1
Learning dynamical systems with hit-and-run random feature maps.
Nat Commun. 2025 Jul 1;16(1):5961. doi: 10.1038/s41467-025-61195-1.
2
Synthetic Lagrangian turbulence by generative diffusion models.
Nat Mach Intell. 2024;6(4):393-403. doi: 10.1038/s42256-024-00810-0. Epub 2024 Apr 17.
3
Uncertainty quantification in coupled wildfire-atmosphere simulations at scale.
PNAS Nexus. 2024 Dec 10;3(12):pgae554. doi: 10.1093/pnasnexus/pgae554. eCollection 2024 Dec.
4
Data-driven discovery of chemotactic migration of bacteria via coordinate-invariant machine learning.
BMC Bioinformatics. 2024 Oct 24;25(1):337. doi: 10.1186/s12859-024-05929-w.
5
Prediction of freak waves from buoy measurements.
Sci Rep. 2024 Jul 18;14(1):16048. doi: 10.1038/s41598-024-66315-3.
7
Deep model predictive control of gene expression in thousands of single cells.
Nat Commun. 2024 Mar 8;15(1):2148. doi: 10.1038/s41467-024-46361-1.
8
Interpretable predictions of chaotic dynamical systems using dynamical system deep learning.
Sci Rep. 2024 Feb 7;14(1):3143. doi: 10.1038/s41598-024-53169-y.
9
STENCIL-NET for equation-free forecasting from data.
Sci Rep. 2023 Aug 7;13(1):12787. doi: 10.1038/s41598-023-39418-6.
10
Neural ordinary differential equations with irregular and noisy data.
R Soc Open Sci. 2023 Jul 19;10(7):221475. doi: 10.1098/rsos.221475. eCollection 2023 Jul.

本文引用的文献

1
Model-Free Prediction of Large Spatiotemporally Chaotic Systems from Data: A Reservoir Computing Approach.
Phys Rev Lett. 2018 Jan 12;120(2):024102. doi: 10.1103/PhysRevLett.120.024102.
3
Learning partial differential equations via data discovery and sparse optimization.
Proc Math Phys Eng Sci. 2017 Jan;473(2197):20160446. doi: 10.1098/rspa.2016.0446.
4
State estimation and prediction using clustered particle filters.
Proc Natl Acad Sci U S A. 2016 Dec 20;113(51):14609-14614. doi: 10.1073/pnas.1617398113. Epub 2016 Dec 5.
5
Dynamical indicators for the prediction of bursting phenomena in high-dimensional systems.
Phys Rev E. 2016 Sep;94(3-1):032212. doi: 10.1103/PhysRevE.94.032212. Epub 2016 Sep 14.
6
Prediction of dynamical systems by symbolic regression.
Phys Rev E. 2016 Jul;94(1-1):012214. doi: 10.1103/PhysRevE.94.012214. Epub 2016 Jul 13.
7
Discovering governing equations from data by sparse identification of nonlinear dynamical systems.
Proc Natl Acad Sci U S A. 2016 Apr 12;113(15):3932-7. doi: 10.1073/pnas.1517384113. Epub 2016 Mar 28.
8
Conceptual dynamical models for turbulence.
Proc Natl Acad Sci U S A. 2014 May 6;111(18):6548-53. doi: 10.1073/pnas.1404914111. Epub 2014 Apr 21.
9
Statistically accurate low-order models for uncertainty quantification in turbulent dynamical systems.
Proc Natl Acad Sci U S A. 2013 Aug 20;110(34):13705-10. doi: 10.1073/pnas.1313065110. Epub 2013 Aug 5.
10
Empirical correction of a toy climate model.
Phys Rev E Stat Nonlin Soft Matter Phys. 2012 Feb;85(2 Pt 2):026201. doi: 10.1103/PhysRevE.85.026201. Epub 2012 Feb 2.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验