Pavlidis Efstathios, Campillo Fabien, Goldbeter Albert, Desroches Mathieu
Neuromod Institute, Université Côte d'Azur, 2004 route des Lucioles-BP93, Sophia Antipolis, 06902 France.
MathNeuro Team, Inria at Université Côte d'Azur, 2004 route des Lucioles-BP93, Sophia Antipolis, 06902 France.
Cogn Neurodyn. 2024 Dec;18(6):3239-3257. doi: 10.1007/s11571-022-09900-4. Epub 2022 Oct 26.
Mixed affective states in bipolar disorder (BD) is a common psychiatric condition that occurs when symptoms of the two opposite poles coexist during an episode of mania or depression. A four-dimensional model by Goldbeter (Progr Biophys Mol Biol 105:119-127, 2011; Pharmacopsychiatry 46:S44-S52, 2013) rests upon the notion that manic and depressive symptoms are produced by two competing and auto-inhibited neural networks. Some of the rich dynamics that this model can produce, include complex rhythms formed by both small-amplitude (subthreshold) and large-amplitude (suprathreshold) oscillations and could correspond to mixed bipolar states. These rhythms are commonly referred to as mixed mode oscillations (MMOs) and they have already been studied in many different contexts by Bertram (Mathematical analysis of complex cellular activity, Springer, Cham, 2015), (Petrov et al. in J Chem Phys 97:6191-6198, 1992). In order to accurately explain these dynamics one has to apply a mathematical apparatus that makes full use of the timescale separation between variables. Here we apply the framework of multiple-timescale dynamics to the model of BD in order to understand the mathematical mechanisms underpinning the observed dynamics of changing mood. We show that the observed complex oscillations can be understood as MMOs due to a so-called . Moreover, we explore the bifurcation structure of the system and we provide possible biological interpretations of our findings. Finally, we show the robustness of the MMOs regime to stochastic noise and we propose a minimal three-dimensional model which, with the addition of noise, exhibits similar yet purely noise-driven dynamics. The broader significance of this work is to introduce mathematical tools that could be used to analyse and potentially control future, more biologically grounded models of BD.
双相情感障碍(BD)中的混合情感状态是一种常见的精神疾病,当在躁狂或抑郁发作期间两种相反极性的症状同时存在时就会出现。戈德贝特尔提出的一个四维模型(《生物物理与分子生物学进展》105:119 - 127,2011年;《药物精神病学》46:S44 - S52,2013年)基于这样一种观念,即躁狂和抑郁症状是由两个相互竞争且自我抑制的神经网络产生的。该模型能够产生的一些丰富动力学现象,包括由小振幅(阈下)和大振幅(阈上)振荡形成的复杂节律,并且可能对应于双相混合状态。这些节律通常被称为混合模式振荡(MMOs),并且伯特伦已经在许多不同的背景下对它们进行了研究(《复杂细胞活动的数学分析》,施普林格出版社,尚姆,2015年),(彼得罗夫等人,《化学物理杂志》97:6191 - 6198,1992年)。为了准确解释这些动力学现象,必须应用一种充分利用变量之间时间尺度分离的数学工具。在这里,我们将多时间尺度动力学框架应用于双相情感障碍模型,以理解支撑观察到的情绪变化动力学的数学机制。我们表明,观察到的复杂振荡可以被理解为由于所谓的……而产生的混合模式振荡。此外,我们探索了该系统的分岔结构,并对我们的发现提供了可能的生物学解释。最后,我们展示了混合模式振荡状态对随机噪声的鲁棒性,并提出了一个最小的三维模型,该模型在添加噪声后表现出类似但纯粹由噪声驱动的动力学。这项工作的更广泛意义在于引入可用于分析并潜在控制未来更具生物学基础的双相情感障碍模型的数学工具。