Department of Brain and Cognitive Engineering, Korea University, Seoul, 02841, Korea; McGovern Institute for Brain Research, Massachusetts Institute of Technology, Cambridge, MA 02139, USA.
Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Charlestown, MA 02129, USA; Harvard Medical School, Boston, MA 02115, USA.
Trends Biotechnol. 2020 Sep;38(9):952-962. doi: 10.1016/j.tibtech.2020.03.003. Epub 2020 Apr 8.
Most of the studies employing neuroimaging have focused on cortical and subcortical signals individually to obtain neurophysiological signatures of cognitive functions. However, understanding the dynamic communication between the cortex and subcortical structures is essential for unraveling the neural correlates of cognition. In this quest, magnetoencephalography (MEG) and electroencephalography (EEG) are the methods of choice because they are noninvasive electrophysiological recording techniques with high temporal resolution. Sophisticated MEG/EEG source estimation techniques and network analysis methods, developed recently, can provide a more comprehensive understanding of the neurophysiological mechanisms of fundamental cognitive processes. Used together with noninvasive modulation of cortical-subcortical communication, these approaches may open up new possibilities for expanding the repertoire of noninvasive cognitive neurotechnology.
大多数使用神经影像学的研究都侧重于皮质和皮质下信号,以单独获得认知功能的神经生理学特征。然而,理解皮质和皮质下结构之间的动态通信对于揭示认知的神经相关性至关重要。在这一探索中,脑磁图 (MEG) 和脑电图 (EEG) 是首选方法,因为它们是具有高时间分辨率的非侵入性电生理记录技术。最近开发的复杂 MEG/EEG 源估计技术和网络分析方法可以提供对基本认知过程的神经生理学机制的更全面理解。与皮质-皮质下通信的非侵入性调制结合使用,这些方法可能为扩展非侵入性认知神经技术的范围开辟新的可能性。