Suppr超能文献

卷积神经网络在智能手机音频信号中的睡眠呼吸暂停检测:窗口大小的影响。

Convolutional Neural Networks for Apnea Detection from Smartphone Audio Signals: Effect of Window Size.

出版信息

Annu Int Conf IEEE Eng Med Biol Soc. 2022 Jul;2022:666-669. doi: 10.1109/EMBC48229.2022.9871396.

Abstract

Although sleep apnea is one of the most prevalent sleep disorders, most patients remain undiagnosed and untreated. The gold standard for sleep apnea diagnosis, polysomnography, has important limitations such as its high cost and complexity. This leads to a growing need for novel cost-effective systems. Mobile health tools and deep learning algorithms are nowadays being proposed as innovative solutions for automatic apnea detection. In this work, a convolutional neural network (CNN) is trained for the identification of apnea events from the spectrograms of audio signals recorded with a smartphone. A systematic comparison of the effect of different window sizes on the model performance is provided. According to the results, the best models are obtained with 60 s windows (sensitivity-0.72, specilicity-0.89, AUROC = 0.88), For smaller windows, the model performance can be negatively impacted, because the windows become shorter than most apnea events, by which sound reductions can no longer be appreciated. On the other hand, longer windows tend to include multiple or mixed events, that will confound the model. This careful trade-off demonstrates the importance of selecting a proper window size to obtain models with adequate predictive power. This paper shows that CNNs applied to smartphone audio signals can facilitate sleep apnea detection in a realistic setting and is a first step towards an automated method to assist sleep technicians. Clinical Relevance- The results show the effect of the window size on the predictive power of CNNs for apnea detection. Furthermore, the potential of smartphones, audio signals, and deep neural networks for automatic sleep apnea screening is demonstrated.

摘要

尽管睡眠呼吸暂停是最常见的睡眠障碍之一,但大多数患者仍未被诊断和治疗。睡眠呼吸暂停的金标准诊断方法——多导睡眠图(PSG)具有重要的局限性,如成本高和复杂。这导致对新型具有成本效益的系统的需求不断增长。移动健康工具和深度学习算法现在被提出作为自动睡眠呼吸暂停检测的创新解决方案。在这项工作中,从智能手机记录的音频信号的频谱图中训练卷积神经网络(CNN)来识别呼吸暂停事件。提供了对不同窗口大小对模型性能影响的系统比较。根据结果,使用 60 秒窗口(灵敏度为 0.72、特异性为 0.89、AUROC=0.88)获得了最佳模型。对于较小的窗口,由于窗口变得短于大多数呼吸暂停事件,因此可能会对模型性能产生负面影响,在此期间,声音减少可能无法被察觉。另一方面,较长的窗口往往会包含多个或混合的事件,这会使模型混淆。这种谨慎的权衡说明了选择适当窗口大小的重要性,以获得具有足够预测能力的模型。本文表明,应用于智能手机音频信号的 CNN 可以在现实环境中促进睡眠呼吸暂停检测,是开发自动睡眠呼吸暂停辅助工具的第一步。临床相关性——结果表明了窗口大小对 CNN 进行呼吸暂停检测的预测能力的影响。此外,还证明了智能手机、音频信号和深度神经网络在自动睡眠呼吸暂停筛查方面的潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验