Suppr超能文献

使用深度学习进行风险评估的新方法学

New approach methodologies for risk assessment using deep learning.

作者信息

Junquera Enol, Díaz Irene, Montes Susana, Febbraio Ferdinando

机构信息

University of Oviedo Oviedo Spain.

Institute of Biochemistry and Cell Biology National Research Council (CNR) Naples Italy.

出版信息

EFSA J. 2024 Dec 20;22(Suppl 1):e221105. doi: 10.2903/j.efsa.2024.e221105. eCollection 2024 Dec.

Abstract

The advancement of technologies and the development of more efficient artificial intelligence (AI) enable the processing of large amounts of data in a very short time. Concurrently, the increase in information within biological databases, such as 3D molecular structures or networks of functional macromolecule associations, will facilitate the creation of new methods for risk assessment that can serve as alternatives to animal testing. Specifically, the predictive capabilities of AI as new approach methodologies (NAMs) are poised to revolutionise risk assessment approaches. Our previous studies on molecular docking predictions, using the software Autodock Vina, indicated high-affinity binding of certain toxic chemicals to the 3D structures of human proteins associated with nervous and reproductive functions. Similar approaches revealed potential sublethal interactions of neonicotinoids with proteins linked to the bees' immune system. Building on these findings, we plan to develop an AI-based decision tool that exploits the data available on the toxicity of the most know chemical, such as LD50, and the data obtainable by their interaction with the human proteins to support risk assessment studies for multiple stressors still not characterised. Our focus will be on utilising these new bioinformatics methodologies to develop specific experimental designs that allow for confident and predictable study of the toxic and sublethal effects of pesticides on humans. We will also validate the developed NAMs by integrating existing in vivo information from scientific literature and technical reports. These approaches will significantly impact toxicity studies, guiding researchers' experiments and greatly reducing the need for animal testing.

摘要

技术的进步以及更高效人工智能(AI)的发展,使得在极短时间内处理大量数据成为可能。与此同时,生物数据库中信息的增加,如三维分子结构或功能性大分子关联网络,将有助于创建新的风险评估方法,以替代动物试验。具体而言,作为新方法学(NAMs)的人工智能的预测能力有望彻底改变风险评估方法。我们之前使用Autodock Vina软件进行分子对接预测的研究表明,某些有毒化学物质与人类神经和生殖功能相关蛋白质的三维结构具有高亲和力结合。类似方法揭示了新烟碱类物质与蜜蜂免疫系统相关蛋白质的潜在亚致死相互作用。基于这些发现,我们计划开发一种基于人工智能的决策工具,该工具利用已知化学物质毒性的可用数据,如半数致死剂量(LD50),以及通过它们与人类蛋白质相互作用可获得的数据,来支持对多种尚未表征的应激源的风险评估研究。我们的重点将是利用这些新的生物信息学方法来开发特定的实验设计,以便对农药对人类的毒性和亚致死效应进行可靠且可预测的研究。我们还将通过整合科学文献和技术报告中的现有体内信息来验证所开发的NAMs。这些方法将对毒性研究产生重大影响,指导研究人员的实验,并大大减少动物试验的需求。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5924/11659721/7460fc9d3afc/EFS2-22-e221105-g002.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验