Suppr超能文献

RosENet:利用 3D 卷积神经网络集成提高结合亲和力预测的分子力学能量。

RosENet: Improving Binding Affinity Prediction by Leveraging Molecular Mechanics Energies with an Ensemble of 3D Convolutional Neural Networks.

机构信息

DS3Lab, System Group, Department of Computer Sciences, ETH Zurich, CH-8092 Zurich, Switzerland.

Institute of Medical Virology, University of Zurich (UZH), CH-8057 Zurich, Switzerland.

出版信息

J Chem Inf Model. 2020 Jun 22;60(6):2791-2802. doi: 10.1021/acs.jcim.0c00075. Epub 2020 May 26.

Abstract

The worldwide increase and proliferation of drug resistant microbes, coupled with the lag in new drug development, represents a major threat to human health. In order to reduce the time and cost for exploring the chemical search space, drug discovery increasingly relies on computational biology approaches. One key step in these approaches is the need for the rapid and accurate prediction of the binding affinity for potential leads. Here, we present RosENet (etta nergy Neural works), an ensemble of three-dimensional (3D) Convolutional Neural Networks (CNNs), which combines voxelized molecular mechanics energies and molecular descriptors for predicting the absolute binding affinity of protein-ligand complexes. By leveraging the physicochemical properties captured by the molecular force field, our ensemble model achieved a Root Mean Square Error (RMSE) of 1.24 on the PDBBind v2016 core set. We also explored some limitations and the robustness of the PDBBind data set and our approach on nearly 500 structures, including structures determined by Nuclear Magnetic Resonance and virtual screening experiments. Our study demonstrated that molecular mechanics energies can be voxelized and used to help improve the predictive power of the CNNs. In the future, our framework can be extended to features extracted from other biophysical and biochemical models, such as molecular dynamics simulations.

摘要

全球耐药微生物的增加和扩散,加上新药研发的滞后,对人类健康构成了重大威胁。为了减少探索化学搜索空间的时间和成本,药物发现越来越依赖于计算生物学方法。这些方法的一个关键步骤是需要快速准确地预测潜在先导物的结合亲和力。在这里,我们提出了 RosENet(eta nergy Neural works),这是一个由三个三维卷积神经网络(CNN)组成的集合,它结合了体素化分子力学能量和分子描述符,用于预测蛋白质-配体复合物的绝对结合亲和力。通过利用分子力场捕捉到的物理化学性质,我们的集成模型在 PDBBind v2016 核心集中实现了 1.24 的均方根误差(RMSE)。我们还探索了 PDBBind 数据集和我们的方法在近 500 个结构上的一些限制和稳健性,包括通过核磁共振和虚拟筛选实验确定的结构。我们的研究表明,分子力学能量可以体素化,并用于帮助提高 CNN 的预测能力。在未来,我们的框架可以扩展到从其他生物物理和生化模型中提取的特征,例如分子动力学模拟。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验