Essig Rouven, Plestid Ryan, Singal Aman
C. N. Yang Institute for Theoretical Physics, Stony Brook University, Stony Brook, NY 11794 USA.
Walter Burke Institute for Theoretical Physics, California Institute of Technology, Pasadena, CA 91125 USA.
Commun Phys. 2024;7(1):416. doi: 10.1038/s42005-024-01904-2. Epub 2024 Dec 19.
Solid-state detectors with a low energy threshold have several applications, including searches of non-relativistic halo dark-matter particles with sub-GeV masses. When searching for relativistic, beyond-the-Standard-Model particles with enhanced cross sections for small energy transfers, a small detector with a low energy threshold may have better sensitivity than a larger detector with a higher energy threshold. In this paper, we calculate the low-energy ionization spectrum from high-velocity particles scattering in a dielectric material. We consider the full material response including the excitation of bulk plasmons. We generalize the energy-loss function to relativistic kinematics, and benchmark existing tools used for halo dark-matter scattering against electron energy-loss spectroscopy data. Compared to calculations commonly used in the literature, such as the Photo-Absorption-Ionization model or the free-electron model, including collective effects shifts the recoil ionization spectrum towards higher energies, typically peaking around 4-6 electron-hole pairs. We apply our results to the three benchmark examples: millicharged particles produced in a beam, neutrinos with a magnetic dipole moment produced in a reactor, and upscattered dark-matter particles. Our results show that the proper inclusion of collective effects typically enhances a detector's sensitivity to these particles, since detector backgrounds, such as dark counts, peak at lower energies.
具有低能量阈值的固态探测器有多种应用,包括搜寻质量低于吉电子伏特的非相对论性晕暗物质粒子。在搜寻具有增强的小能量转移截面的相对论性、超出标准模型的粒子时,一个具有低能量阈值的小型探测器可能比一个具有较高能量阈值的大型探测器具有更好的灵敏度。在本文中,我们计算了高速粒子在介电材料中散射产生的低能电离谱。我们考虑了包括体等离子体激元激发在内的完整材料响应。我们将能量损失函数推广到相对论运动学,并根据电子能量损失谱数据对用于晕暗物质散射的现有工具进行基准测试。与文献中常用的计算方法(如光吸收电离模型或自由电子模型)相比,包括集体效应会使反冲电离谱向更高能量移动,通常在4 - 6个电子 - 空穴对左右达到峰值。我们将我们的结果应用于三个基准示例:束流中产生的微带电粒子、反应堆中产生的具有磁偶极矩的中微子以及上散射暗物质粒子。我们的结果表明,适当地包含集体效应通常会提高探测器对这些粒子的灵敏度,因为探测器背景(如暗计数)在较低能量处达到峰值。