Higgins Emily, Duppel Kyralai, Connell Megan, Brenna Guyon, Sobolev Konstantin
IntelliReefs CAN, Halifax, Nova Scotia, Canada.
IntelliReefs, Salt Lake City, Utah, United States.
PeerJ. 2024 Dec 17;12:e18487. doi: 10.7717/peerj.18487. eCollection 2024.
Artificial reefs are being increasingly deployed as a coral reef restoration strategy. Additional reef habitats made from conventional substrates (., metal, concrete, .) have had limited success in addressing conservation objectives on degraded coral reefs due to structure size and lack of standardized monitoring, and inability to enhance select ecological, and species variables. Technological advances and new restoration methods must be quickly tested and applied on a large scale to curb further deterioration of coral reefs. Here, we present the results of the first deployment of Oceanite artificial reefs (ARs). We compare the composition of the benthic community and associated fish assemblages on Oceanite ARs 14 months after deployment in a marine protected area (MPA) and two unprotected sites in Philipsburg, Sint Maarten. We also examined fish abundance and behaviour on the ARs. The initial results from this pilot study suggest that Oceanite mineral matrices can enhance local biodiversity, attract coral recruits, provide food and protection for large fish communities, and develop an early stage, healthy coral reef community in 14 months. We suggest that further research and testing of Oceanite capabilities will allow us to develop site-, species-, and function-specific nanotechnology-enabled substrates to optimize AR conservation goals. Oceanite mix designs can be tuned to precise parameters to promote reef restoration and stressor mitigation (., pH, leachate emissions, surface texture, porosity, void structure, and hydrophobic, heat-absorbing, and disease-fighting properties). Using both bottom-up and top-down restoration processes, we suggest that deploying bio-enhancing habitats with targeted microclimate stressor treatments on the world's critical reefs will allow to build global refuges resilient to climate change and provide much needed ecosystem services.
人工鱼礁正越来越多地被用作珊瑚礁恢复策略。由传统基质(如金属、混凝土等)制成的额外礁体栖息地,在解决退化珊瑚礁的保护目标方面成效有限,原因包括结构尺寸、缺乏标准化监测,以及无法增强特定的生态和物种变量。必须迅速对技术进步和新的恢复方法进行大规模测试和应用,以遏制珊瑚礁的进一步退化。在此,我们展示了首次部署海洋岩人工鱼礁(ARs)的结果。我们比较了在圣马丁岛菲利普斯堡的一个海洋保护区(MPA)和两个未受保护地点部署14个月后,海洋岩人工鱼礁上底栖生物群落和相关鱼类组合的组成。我们还研究了人工鱼礁上鱼类的丰度和行为。这项初步研究的初步结果表明,海洋岩矿物基质可以增强当地生物多样性,吸引珊瑚幼体,为大型鱼类群落提供食物和保护,并在14个月内发展出一个早期的、健康的珊瑚礁群落。我们建议,对海洋岩能力进行进一步研究和测试,将使我们能够开发出针对特定地点、物种和功能的纳米技术基质,以优化人工鱼礁的保护目标。海洋岩混合设计可以调整到精确参数,以促进珊瑚礁恢复和减轻压力源(如pH值、渗滤液排放、表面纹理、孔隙率、空隙结构以及疏水、吸热和抗病特性)。通过自下而上和自上而下的恢复过程,我们建议在世界关键珊瑚礁上部署具有针对性微气候压力源处理的生物增强栖息地,将能够建立抵御气候变化的全球避难所,并提供急需的生态系统服务。