Sandoval Hurtado Casandra P, Kelly Samantha P, Shende Vikram, Perez Makayla, Curtis Brian J, Newmister Sean A, Ott Kaleb, Pereira Filipa, Sherman David H
bioRxiv. 2024 Dec 12:2024.12.10.627567. doi: 10.1101/2024.12.10.627567.
The privileged fused-ring system comprising the bicyclo[2.2.2]diazaoctane (BDO) core is prevalent in diketopiperazine (DKP) natural products with potent and diverse biological activities, with some being explored as drug candidates. Typically, only low yields of these compounds can be extracted from native fungal producing strains and the available synthetic routes remain challenging due to their structural complexity. BDO-containing DKPs including (+)-brevianamides A and B are assembled via multi-component biosynthetic pathways incorporating non-ribosomal peptide synthetases, prenyltransferases, flavin monooxygenases, cytochrome P450s and semi-pinacolases. To simplify access to this class of alkaloids, we designed an engineered biosynthetic pathway in , composed of six enzymes sourced from different kingdoms of life. The pathway includes a cyclodipeptide synthase (NascA), a cyclodipeptide oxidase (DmtD2/DmtE2), a prenyltransferase (NotF), a flavin-dependent monooxygenase (BvnB), and kinases (PhoN and IPK). Cultivated in glycerol supplemented with prenol, the engineered strain produces 5.3 mg/L of (-)-dehydrobrevianamide E ( ), which undergoes a terminal, lithium hydroxide catalyzed rearrangement reaction to yield (+)-brevianamides A and B with a 46% yield and a 92:8 diastereomeric ratio. Additionally, titers of were increased eight-fold by enhancing NADPH pools in the engineered strain. Our study combines synthetic biology, biocatalysis and synthetic chemistry approaches to provide a five-step engineered biosynthetic pathway for producing complex indole alkaloids in .
包含双环[2.2.2]二氮杂辛烷(BDO)核心的特权稠环系统在具有强大且多样生物活性的二酮哌嗪(DKP)天然产物中普遍存在,其中一些正被探索作为候选药物。通常,从天然真菌生产菌株中只能提取出低产量的这些化合物,并且由于其结构复杂性,现有的合成路线仍然具有挑战性。含BDO的DKP,包括(+)-短杆菌酰胺A和B,是通过多组分生物合成途径组装而成的,该途径包含非核糖体肽合成酶、异戊烯基转移酶、黄素单加氧酶、细胞色素P450和半频哪醇酶。为了简化获取这类生物碱的途径,我们在大肠杆菌中设计了一条工程化生物合成途径,该途径由来自不同生命王国的六种酶组成。该途径包括环二肽合酶(NascA)、环二肽氧化酶(DmtD2/DmtE2)、异戊烯基转移酶(NotF)、黄素依赖性单加氧酶(BvnB)和激酶(PhoN和IPK)。在补充了异戊烯醇的甘油中培养时,工程化大肠杆菌菌株产生5.3 mg/L的(-)-脱氢短杆菌酰胺E,其经过末端氢氧化锂催化的重排反应,以46%的产率和92:8的非对映体比例生成(+)-短杆菌酰胺A和B。此外,通过增强工程化大肠杆菌菌株中的NADPH库,其滴度提高了八倍。我们的研究结合了合成生物学、生物催化和合成化学方法来提供一条五步工程化生物合成途径,用于在大肠杆菌中生产复杂的吲哚生物碱。