Sandoval Hurtado Casandra P, Kelly Samantha P, Shende Vikram, Perez Makayla, Curtis Brian J, Newmister Sean A, Ott Kaleb, Pereira Filipa, Sherman David H
Life Sciences Institute, University of Michigan, Ann Arbor, Michigan 48109, United States.
Program in Chemical Biology, University of Michigan, Ann Arbor, Michigan 48109, United States.
ACS Catal. 2025 May 2;15(9):6711-6720. doi: 10.1021/acscatal.5c00753. Epub 2025 Apr 10.
The privileged fused-ring structure comprising the bicyclo[2.2.2]diazaoctane (BDO) core is prevalent in diketopiperazine (DKP) natural products that exhibit potent and diverse biological activities. Typically, only low yields of these compounds can be extracted from native fungal producing strains and accessing them diastereoselectively remains challenging using available synthetic routes. BDO-containing DKPs including (+)-brevianamides A and B are assembled via multi-enzyme biosynthetic pathways incorporating non-ribosomal peptide synthetases, prenyltransferases, flavin monooxygenases, cytochromes P450 and isomerases. To simplify access to this class of alkaloids, we designed an engineered biosynthetic pathway in , composed of six enzymes sourced from different kingdoms of life. The pathway includes a cyclodipeptide synthase from sp. CMB-MQ030 (NascA), cyclodipeptide oxidase from sp. F5123 (DmtD2/DmtE2), prenyltransferase from sp. MF297-2 (NotF), flavin-dependent monooxygenase from (BvnB), and kinases from and (PhoN and IPK). Cultivated in glycerol media supplemented with prenol, the engineered strain produces 5.3 mg/L of (-)-dehydrobrevianamide E , which undergoes a previously reported lithium hydroxide rearrangement cascade to yield and , with a combined 70% yield and a 94:6 diastereomeric ratio. Additionally, titers of were increased to 20.6 mg/L by enhancing NADPH pools in the engineered strain. Overall, our study combines biosynthetic pathway engineering and chemical synthesis approaches to generate complex indole alkaloids.
包含双环[2.2.2]二氮杂辛烷(BDO)核心的特殊稠环结构在具有强大且多样生物活性的二酮哌嗪(DKP)天然产物中普遍存在。通常,从天然真菌生产菌株中只能提取到低产量的这些化合物,并且使用现有的合成路线非对映选择性地获取它们仍然具有挑战性。含BDO的DKP,包括(+) - 短杆菌酰胺A和B,是通过包含非核糖体肽合成酶、异戊烯基转移酶、黄素单加氧酶、细胞色素P450和异构酶的多酶生物合成途径组装而成。为了简化获取这类生物碱的途径,我们在大肠杆菌中设计了一条工程化生物合成途径,该途径由来自不同生命王国的六种酶组成。该途径包括来自芽孢杆菌属sp. CMB - MQ030的环二肽合酶(NascA)、来自链霉菌属sp. F5123的环二肽氧化酶(DmtD2 / DmtE2)、来自链霉菌属sp. MF297 - 2的异戊烯基转移酶(NotF)、来自酿酒酵母(BvnB)的黄素依赖性单加氧酶,以及来自嗜热栖热菌和嗜热栖热菌(PhoN和IPK)的激酶。在补充了异戊烯醇的甘油培养基中培养时,工程化的大肠杆菌菌株产生5.3 mg/L的( - ) - 脱氢短杆菌酰胺E,其经过先前报道的氢氧化锂重排级联反应生成[具体产物1]和[具体产物2],总产率为70%,非对映体比例为94:6。此外,通过增强工程化菌株中的NADPH库,[产物名称]的滴度提高到了20.6 mg/L。总体而言,我们的研究结合了大肠杆菌生物合成途径工程和化学合成方法来生成复杂的吲哚生物碱。