Chen Huaiyou, Klemm Sophie, Dönitz Antonia G, Ou Yating, Schmidt Bertram, Fleck Claudia, Simon Ulla, Völlmecke Christina
Faculty III Process Sciences, Institute of Materials Science and Technology, Chair of Advanced Ceramic Materials, Technische Universität Berlin, Berlin 10623, Germany.
Faculty III - Process Sciences, Institute of Materials Science and Technology, Chair of Materials Science & Engineering/Fachgebiet Werkstofftechnik, Technische Universität Berlin, Str. des 17. Juni 135, Berlin 10623, Germany.
ACS Omega. 2024 Dec 3;9(50):49609-49617. doi: 10.1021/acsomega.4c07661. eCollection 2024 Dec 17.
To advance the concept of a circular economy, fungal mycelium-based materials are drawing increased attention as substitutes for nonsustainable materials, such as petroleum-based and animal-derived products, due to their biodegradability, low carbon footprint, and cruelty-free nature. Addressing the challenge of mechanical properties in fungal mycelium products, this study presents a straightforward approach for reinforcing fungal mycelium mats. This is achieved by using two bio-based and biodegradable polymers, poly(3-hydroxybutyrate--3-hydroxyhexanoate) (PHBH) and polylactic acid (PLA), via material extrusion additive manufacturing (MEX AM), commonly known as 3D printing, to produce fungal mycelium-biopolymer composites. By analyzing the mechanical properties, roughness, and morphology, this study demonstrates significant improvements in ultimate tensile strength with the application of PHBH and even more with PLA, while elasticity is reduced. The study also discusses potential improvements to enhance the quality of the fungal mycelium-biopolymer composites without trading off bio-based and biodegradable features, offering a promising pathway for the development of more durable and sustainable fungal mycelium products.
为了推进循环经济的理念,基于真菌菌丝体的材料作为不可持续材料(如石油基和动物源产品)的替代品,因其可生物降解性、低碳足迹和无残忍性质而受到越来越多的关注。针对真菌菌丝体产品的机械性能挑战,本研究提出了一种增强真菌菌丝体垫的简单方法。这是通过使用两种生物基且可生物降解的聚合物,聚(3-羟基丁酸酯-3-羟基己酸酯)(PHBH)和聚乳酸(PLA),通过材料挤出增材制造(MEX AM)(通常称为3D打印)来生产真菌菌丝体-生物聚合物复合材料实现的。通过分析机械性能、粗糙度和形态,本研究表明,应用PHBH时极限拉伸强度有显著提高,应用PLA时提高得更多,而弹性降低。该研究还讨论了在不牺牲生物基和可生物降解特性的情况下提高真菌菌丝体-生物聚合物复合材料质量的潜在改进方法,为开发更耐用和可持续的真菌菌丝体产品提供了一条有前景的途径。