Suppr超能文献

基于SnO的可调谐透明导体:共掺杂的理论与实验研究

Tunable Transparent Conductors Based on SnO: Theoretical and Experimental Studies of Codoping.

作者信息

Qian Wenjing, Feng Xianghui, Wang Yanxue, Nazligul Ahmet, Lu Yiwen, Wang Mingqing, Wu Wei, Choy Kwang Leong

机构信息

UCL Institute for Materials Discovery, University College London, Malet Place, London WC1E 7JE, United Kingdom.

出版信息

ACS Omega. 2024 Dec 4;9(50):49674-49682. doi: 10.1021/acsomega.4c07860. eCollection 2024 Dec 17.

Abstract

Transparent conducting oxides (TCOs) are widely used in modern electronics because they have both high transmittance and good conductivity, which is beneficial for many applications such as light-emitting diodes. Tailoring electronic states and hence the conductive types by design is important for developing new materials with optimal properties for TCOs. SnO, with a wide band gap, low cost, no toxins, and high stability, is a promising host material for TCOs. Here, we performed a set of hybrid-exchange density functional theory calculations on the two-element and three-element codoped SnO by using Sr, Ta, Al, Ga, V, and Nb, which were then validated by the relevant experimental works on SnO. As predicted by the first-principles calculations, the controllability of the electronic states to be n- or p-type can be demonstrated experimentally by varying the relative doping concentration between donors (Ta/Nb) and acceptors (Al/Ga). One of the main advantages for these codoping methods is that the charge neutrality problem caused by the dopant can be circumvented. The thin films fabricated showed a low sheet resistance (down to ∼450 Ω) and a high optical transparency (above 80%). The combination of our calculations and experimental material fabrication and characterizations has shown a great potential for codoping SnO for (i) the efficient processing of the integrated circuit composed of both p-type and n-type transistors (using the same target precursors during the deposition) and (ii) a good lattice matching for p-n junctions. Most importantly, our calculations, supported by the experimental works, point to a promising route to accelerate the discovery process for the alternative cost-effective and high-performance indium-free TCOs using computational material design.

摘要

透明导电氧化物(TCOs)在现代电子学中被广泛应用,因为它们兼具高透光率和良好的导电性,这对许多应用(如发光二极管)都很有益。通过设计来调控电子态以及由此产生的导电类型,对于开发具有TCOs最佳性能的新材料至关重要。SnO具有宽带隙、低成本、无毒且稳定性高的特点,是一种很有前景的TCOs主体材料。在此,我们利用Sr、Ta、Al、Ga、V和Nb对二元和三元共掺杂的SnO进行了一组杂化交换密度泛函理论计算,随后通过SnO的相关实验工作进行了验证。正如第一性原理计算所预测的那样,通过改变施主(Ta/Nb)和受主(Al/Ga)之间的相对掺杂浓度,可以通过实验证明电子态可控为n型或p型。这些共掺杂方法的主要优点之一是可以规避由掺杂剂引起的电荷中性问题。制备的薄膜显示出低方块电阻(低至约450Ω)和高光学透明度(高于80%)。我们的计算与实验材料制备及表征相结合,显示出共掺杂SnO在以下方面具有巨大潜力:(i)高效加工由p型和n型晶体管组成的集成电路(在沉积过程中使用相同的目标前驱体);(ii)实现p-n结的良好晶格匹配。最重要的是,我们的计算得到了实验工作的支持,指出了一条利用计算材料设计加速发现替代的具有成本效益且高性能的无铟TCOs的有前景的途径。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/fdf8/11656248/bbb6c8fe330b/ao4c07860_0001.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验