Li Rebecca L, Sbalbi Nicholas, Ye Matthew, Macfarlane Robert J
Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, Massachusetts 02139, United States.
ACS Nanosci Au. 2024 Oct 31;4(6):374-380. doi: 10.1021/acsnanoscienceau.4c00062. eCollection 2024 Dec 18.
Colloidal nanoparticle assembly methods can produce intricate superlattice structures and often use knowledge of atomic crystallization behaviors to guide their design. While this analogy has enabled multiple routes to programming colloidal crystallization thermodynamics, fewer tools or strategies exist to manipulate nanoparticle superlattice growth kinetics in a controlled manner. Here we investigate how small-molecule additives can be used to modulate the thermodynamics and kinetics of supramolecular-chemistry-driven nanoparticle assembly. Specifically, we introduce monovalent binding agents into the superlattice growth solution that compete with the multivalent interparticle bonding interactions driving particle assembly, thereby altering interparticle bond strength by reducing the number of bridging complexes formed between particles. In this manner, the assemblies can be steered to avoid kinetic traps and crystallize into faceted single crystals under isothermal conditions, alleviating the need for precise thermal control that has conventionally been required to produce large, faceted crystals in prior assembly methods.
胶体纳米颗粒组装方法可以产生复杂的超晶格结构,并且常常利用原子结晶行为的知识来指导其设计。虽然这种类比已经为调控胶体结晶热力学提供了多种途径,但能够以可控方式操纵纳米颗粒超晶格生长动力学的工具或策略却较少。在此,我们研究小分子添加剂如何用于调节超分子化学驱动的纳米颗粒组装的热力学和动力学。具体而言,我们将单价结合剂引入超晶格生长溶液中,其与驱动颗粒组装的多价颗粒间键合相互作用相互竞争,从而通过减少颗粒之间形成的桥连复合物的数量来改变颗粒间的键合强度。通过这种方式,可以引导组装避免动力学陷阱,并在等温条件下结晶成多面单晶,从而无需像之前组装方法中生产大尺寸多面晶体时通常所需的精确热控制。