Zellmer Jacob C, Tarantino Marina B, Kim Michelle, Lomoio Selene, Maesako Masato, Hajnóczky György, Bhattacharyya Raja
Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Henry and Allison McCance Center for Brain Health, Department of Neurology, Massachusetts General Hospital, Harvard Medical School, Charlestown, Massachusetts, USA.
Department of Neuroscience, Tufts University School of Medicine, Boston, Massachusetts, USA.
Alzheimers Dement. 2025 Feb;21(2):e14417. doi: 10.1002/alz.14417. Epub 2024 Dec 23.
We previously demonstrated that regulating mitochondria-associated endoplasmic reticulum (ER) membranes (MAMs) affects axonal Aβ generation in a well-characterized three-dimensional (3D) neural Alzheimer's disease (AD) model. MAMs vary in thickness and length, impacting their functions. Here, we examined the effect of MAM thickness on Aβ in our 3D neural model of AD.
We employed fluorescence resonance energy transfer (FRET) or fluorescence-based MAM stabilizers, electron microscopy, Aβ enzyme-linked immunosorbent assay (ELISA), and live-cell imaging with kymography to assess how stabilizing MAMs of different gap widths influence Aβ production and MAM axonal mobility.
Stabilizing tight MAMs (∼6 nm gap width) significantly increased Aβ levels, whereas basal (∼25 nm) and loose MAMs (∼40 nm) maintained or reduced Aβ levels, respectively. Tight MAMs reduced mitochondrial axonal velocity compared to basal MAMs, while loose MAMs showed severely reduced axonal distribution.
Our findings suggest that stabilizing MAMs of specific gap widths, particularly in axons, without complete destabilization could be an effective therapeutic strategy for AD.
The stabilization of MAMs exacerbates or ameliorates Aβ generation from AD neurons in a MAM gap width-dependent manner. A specific stabilization threshold within the MAM gap width spectrum shifts the amyloidogenic process to non-amyloidogenic. Tight MAMs slow down mitochondrial axonal transport compared to lose MAMs offering a quantitative method for measuring MAM stabilization.
我们之前证明,在一个特征明确的三维(3D)神经阿尔茨海默病(AD)模型中,调节线粒体相关内质网(ER)膜(MAMs)会影响轴突β淀粉样蛋白(Aβ)的生成。MAMs的厚度和长度各不相同,这会影响它们的功能。在此,我们在AD的3D神经模型中研究了MAM厚度对Aβ的影响。
我们采用荧光共振能量转移(FRET)或基于荧光的MAM稳定剂、电子显微镜、Aβ酶联免疫吸附测定(ELISA)以及带记波法的活细胞成像,以评估稳定不同间隙宽度的MAMs如何影响Aβ产生和MAM轴突移动性。
稳定紧密型MAMs(间隙宽度约为6纳米)显著增加Aβ水平,而基础型(约25纳米)和松散型MAMs(约40纳米)分别维持或降低Aβ水平。与基础型MAMs相比,紧密型MAMs降低了线粒体轴突速度,而松散型MAMs的轴突分布则严重减少。
我们的研究结果表明,稳定特定间隙宽度的MAMs,尤其是轴突中的MAMs,而不完全使其不稳定,可能是治疗AD的有效策略。
MAMs的稳定以MAM间隙宽度依赖的方式加剧或改善AD神经元的Aβ生成。MAM间隙宽度谱内的特定稳定阈值将淀粉样蛋白生成过程转变为非淀粉样蛋白生成。与松散型MAMs相比,紧密型MAMs减缓线粒体轴突运输,为测量MAM稳定性提供了一种定量方法。