Huber Alexander, Schmidt Laura, Gatz Tim, Bublitz Jana, Rex Tobias, Sailaja Sidharth Thulaseedharen Nair, Verheggen Elisabeth, Höfmann Lea, Wölper Christoph, Strassert Cristian A, Knauer Shirley K, Voskuhl Jens
Faculty of Chemistry (Organic Chemistry), CENIDE and Center of Medical Biotechnology (ZMB), University of Duisburg-Essen, Universitätsstraße 7, 45141, Essen, Germany.
Department of Molecular Biology II, Center of Medical Biotechnology (ZMB), University of Duisburg-Essen, Universitätsstraße 2, 45141, Essen, Germany.
Chemistry. 2025 Mar 6;31(14):e202404263. doi: 10.1002/chem.202404263. Epub 2025 Jan 22.
In recent years, researchers studying fluorogenic samples have steadily shifted from using large, expensive, poorly soluble fluorophores with complex synthetic sequences to smaller, simpler π scaffolds with low molecular weight. This research article presents an in-depth study of the photophysical properties of five bridged single-benzene-based fluorophores (SBBFs) investigated for their solution and solid-state emission (SSSE) properties. The compounds O, NO, NO, NO, and N are derived from a central terephthalonitrile core and vary in the amount of oxygen and nitrogen bridging atoms. These minimalized emitters show full-color tunable emission properties and exhibit moderate-to-high photoluminescence quantum yield values reaching up to 0.78 in dimethyl sulfoxide (DMSO). In addition to demonstrating excellent compatibility in poly(methyl methacrylate) (PMMA) films and additive manufacturing using stereolithography (SLA), white light emission was achieved in both solution and 3D-printed materials by controlling the mixing ratio of the compounds. Employing density-functional theory (DFT), well-correlating theoretical absorption and emission wavelengths were calculated as average values of the different possible conformers. Furthermore, cellular internalization of the substances was accomplished using Pluronic F-127 nanoparticles. Overall, this study emphasizes the remarkable properties of single-benzene-based emitters, showcasing their accessibility and potential applications in biomedical fields and materials science.
近年来,研究荧光样品的研究人员已逐渐从使用具有复杂合成序列、体积大、价格昂贵且难溶的荧光团,转向使用分子量低、结构更简单的小型π支架。本文对五种桥连单苯基金属荧光团(SBBF)的光物理性质进行了深入研究,考察了它们在溶液和固态下的发射(SSSE)性质。化合物O、NO、NO、NO和N衍生自中心对苯二甲腈核,氧和氮桥连原子的数量各不相同。这些简化的发光体显示出全色可调发射特性,在二甲基亚砜(DMSO)中的光致发光量子产率值达到中等至较高水平,最高可达0.78。除了在聚甲基丙烯酸甲酯(PMMA)薄膜和使用立体光刻(SLA)的增材制造中表现出优异的兼容性外,通过控制化合物的混合比例,在溶液和3D打印材料中均实现了白光发射。利用密度泛函理论(DFT),计算出与理论吸收和发射波长相关性良好的平均值,作为不同可能构象体的平均值。此外,使用普朗尼克F-127纳米颗粒实现了物质的细胞内化。总的来说,这项研究强调了单苯基金属发光体的卓越性能,展示了它们在生物医学领域和材料科学中的可及性和潜在应用。