Dong Xiaoyu, Li Zhiwei, Wu Zhiyuan, Meng Fanhao, Xiao Hong, Xu Hai, Zhang Xiaogang, Lin Zhiqun, Dou Hui
Jiangsu Key Laboratory of Materials and Technologies for Energy Storage Technology, College of Material Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu, 210016, People's Republic of China.
Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 118425, Singapore.
Angew Chem Int Ed Engl. 2025 Mar 17;64(12):e202423908. doi: 10.1002/anie.202423908. Epub 2025 Jan 9.
Proton electrochemistry holds eminent potential for developing high capacity and rate energy storage devices in the post-lithium era. However, the decomposition of water in acidic aqueous electrolytes causes electrode corrosion, leading to capacity fading. Herein, we report a judicious design of molecular micellar aggregates as non-aqueous electrolytes for stable and high-voltage electrochemical proton storage. The key to our strategy lies in introducing cetyltrimethylammonium bromide (CTAB), forming micelles to improve the miscibility of acetonitrile (ACN) and HPO, afford channel for proton transport, and electrostatically interact with phosphate ions of HPO to further promote proton transport. Such aggregates impart rapid and stable electrochemical proton storage with a widened operating voltage (1.8 V vs. 1.5 V in aqueous electrolyte). By optimizing CTAB content, proton transport can be enhanced. Asymmetric full proton battery using the optimal CTAB electrolyte achieves a maximum energy density of 102.8 Wh kg and a maximum power density of 10.1 kW kg. Our simple yet robust route to micellar aggregate electrolytes enables stable proton storage, underscoring its potential for grid-scale energy storage, emergency power supplies, and portable electronics.
质子电化学在锂后时代开发高容量和高倍率储能装置方面具有巨大潜力。然而,酸性水电解质中的水分解会导致电极腐蚀,从而导致容量衰减。在此,我们报告了一种作为非水电解质的分子胶束聚集体的明智设计,用于稳定的高压电化学质子存储。我们策略的关键在于引入十六烷基三甲基溴化铵(CTAB),形成胶束以改善乙腈(ACN)和HPO的混溶性,为质子传输提供通道,并与HPO的磷酸根离子发生静电相互作用以进一步促进质子传输。这种聚集体赋予快速且稳定的电化学质子存储能力,同时拓宽了工作电压(相对于水电解质中的1.5 V为1.8 V)。通过优化CTAB含量,可以增强质子传输。使用最佳CTAB电解质的不对称全质子电池实现了102.8 Wh kg的最大能量密度和10.1 kW kg的最大功率密度。我们制备胶束聚集体电解质的简单而稳健的方法实现了稳定的质子存储,突出了其在电网规模储能、应急电源和便携式电子产品中的潜力。