Dong Xiaoyu, Li Zhiwei, Xu Hai, Wu Zhiyuan, Meng Fanhao, Liu Shuzhi, Dou Hui, Zhang Xiaogang
Jiangsu Key Laboratory of Materials and Technologies for Energy Storage Technology, College of Material Science and Technology, Nanjing University of Aeronautics and Astronautics, Nanjing, 210016, P. R. China.
Chemical and Biomolecular Engineering, National University of Singapore, Singapore, 117585, Singapore.
Adv Sci (Weinh). 2025 Apr;12(14):e2416931. doi: 10.1002/advs.202416931. Epub 2025 Feb 14.
Proton batteries are strong contender for next-generation energy storage due to their high safety and rapid response. However, the narrow electrochemical window of acidic aqueous electrolytes limits their energy density and stability. Here, an ionic liquid (IL)-based electrolyte (EMImOTf-HPO) containing HPO in polar IL solvent 1-ethyl-3-methylimidazolium trifluoromethanesulfonate (EMImOTf) is developed for stable high-voltage energy storage. HPO serving as a proton source interacts with both EMIm and OTf, forming an intricate hydrogen bonding network that effectively prevents electrolyte decomposition at high voltage. The half-cell in EMImOTf-HPO electrolyte and pre-protonated vanadium hexacyanoferrate (H-VHCF) cathode demonstrates a 126% improvement in Coulombic efficiency over aqueous electrolytes at a current density of 1 A g. The fabricated PTCDA/MXene//EMImOTf-HPO//H-VHCF full battery achieves an operating voltage of 2 V at room temperature, surpassing currently reported values for proton batteries. After 30 000 cycles at 5 A g, the battery retains 86.1% of its initial capacity. It delivers an energy density of 87.5 Wh kg and a power density of 30.6 kW kg at room temperature, and can maintain stable operation across a temperature range of 110 °C (-60 ∼ 50 °C). These findings present new possibilities for proton batteries in all-weather grid-scale energy storage applications.
由于其高安全性和快速响应性,质子电池是下一代储能的有力竞争者。然而,酸性水性电解质狭窄的电化学窗口限制了它们的能量密度和稳定性。在此,开发了一种基于离子液体(IL)的电解质(EMImOTf-HPO),它在极性IL溶剂1-乙基-3-甲基咪唑三氟甲磺酸盐(EMImOTf)中含有HPO,用于稳定的高压储能。作为质子源的HPO与EMIm和OTf相互作用,形成一个复杂的氢键网络,有效地防止了电解质在高压下分解。在EMImOTf-HPO电解质和预质子化的六氰合铁酸钒(H-VHCF)阴极中的半电池在1 A g的电流密度下,库仑效率比水性电解质提高了126%。制备的PTCDA/MXene//EMImOTf-HPO//H-VHCF全电池在室温下的工作电压为2 V,超过了目前报道的质子电池的值。在5 A g下循环30000次后,电池保留了其初始容量的86.1%。它在室温下的能量密度为87.5 Wh kg,功率密度为30.6 kW kg,并且可以在-60至50°C的温度范围内保持稳定运行。这些发现为质子电池在全天候电网规模储能应用中提供了新的可能性。