Suppr超能文献

CPARI:一种将细胞划分与绝对和相对插补相结合以解决单细胞RNA测序数据缺失值的新方法。

CPARI: a novel approach combining cell partitioning with absolute and relative imputation to address dropout in single-cell RNA-seq data.

作者信息

Zhang Yi, Wang Yin, Liu Xinyuan, Feng Xi

机构信息

School of Computer Science and Engineering, Guilin University of Technology, 12 Jiangan Road, Qixing District, Guilin 541004, China.

Guangxi Key Laboratory of Embedded Technology and Intelligent System, Guilin University of Technology, 12 Jiangan Road, Qixing District, Guilin 541004, China.

出版信息

Brief Bioinform. 2024 Nov 22;26(1). doi: 10.1093/bib/bbae668.

Abstract

A key challenge in analyzing single-cell RNA sequencing data is the large number of false zeros, known as "dropout zeros", which are caused by technical limitations such as shallow sequencing depth or inefficient mRNA capture. To address this challenge, we propose a novel imputation model called CPARI, which combines cell partitioning with our designed absolute and relative imputation methods. Initially, CPARI employs a new approach to select highly variable genes and constructs an average consensus matrix using C-mean fuzzy clustering-based blockchain technology to obtain results at different resolutions. Hierarchical clustering is then applied to further refine these blocks, resulting in well-defined cellular partitions. Subsequently, CPARI identifies dropout events and determines the imputation positions of these identified zeros. An autoencoder is trained within each cellular block to learn gene features and reconstruct data. Our uniquely defined absolute imputation technique is first applied to the identified positions, followed by our relative imputation technique to address remaining dropout zeros, ensuring that both global consistency and local variation are maintained. Through comprehensive analyses conducted on simulated and real scRNA-seq datasets, including quantitative assessment, differential expression analysis, cell clustering, cell trajectory inference, robustness evaluation, and large-scale data imputation, CPARI demonstrates superior performance compared to 12 other art-of-state imputation models. Additionally, ablation experiments further confirm the significance and necessity of both the cell partitioning and relative imputation components of CPARI. Notably, CPARI as a new denoising approach could distinguish between real biological zeros and dropout zeros and minimize false positives, and maximize the accuracy of imputation.

摘要

分析单细胞RNA测序数据的一个关键挑战是存在大量的假零值,即所谓的“缺失零值”,这些假零值是由测序深度浅或mRNA捕获效率低等技术限制导致的。为应对这一挑战,我们提出了一种名为CPARI的新型插补模型,该模型将细胞划分与我们设计的绝对和相对插补方法相结合。最初,CPARI采用一种新方法来选择高度可变基因,并使用基于C均值模糊聚类的区块链技术构建平均共识矩阵,以在不同分辨率下获得结果。然后应用层次聚类进一步细化这些块,从而得到定义明确的细胞分区。随后,CPARI识别缺失事件并确定这些已识别零值的插补位置。在每个细胞块内训练一个自动编码器来学习基因特征并重建数据。我们独特定义的绝对插补技术首先应用于已识别的位置,随后应用我们的相对插补技术来处理剩余的缺失零值,确保同时保持全局一致性和局部变异性。通过对模拟和真实scRNA-seq数据集进行全面分析,包括定量评估、差异表达分析、细胞聚类、细胞轨迹推断、稳健性评估和大规模数据插补,CPARI与其他12种当前最先进的插补模型相比表现出卓越的性能。此外,消融实验进一步证实了CPARI的细胞划分和相对插补组件的重要性和必要性。值得注意的是,CPARI作为一种新的去噪方法,可以区分真实的生物学零值和缺失零值,并将假阳性最小化,同时最大化插补的准确性。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/5d09/11666288/3ba8b07912ff/bbae668f1.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验